Contrasting effects of nitrogen addition on soil respiration in two Mediterranean ecosystems.

Environ Sci Pollut Res Int

Department of Science for Nature and Environmental Resources (DipNET), University of Sassari, Via Enrico de Nicola, No. 9, 07100, Sassari, Italy.

Published: December 2017

AI Article Synopsis

Article Abstract

Increased atmospheric nitrogen (N) deposition is known to alter ecosystem carbon source-sink dynamics through changes in soil CO fluxes. However, a limited number of experiments have been conducted to assess the effects of realistic N deposition in the Mediterranean Basin, and none of them have explored the effects of N addition on soil respiration (R ). To fill this gap, we assessed the effects of N supply on R dynamics in the following two Mediterranean sites: Capo Caccia (Italy), where 30 kg ha year was supplied for 3 years, and El Regajal (Spain), where plots were treated with 10, 20, or 50 kg N ha year for 8 years. Results show a complex, non-linear response of soil respiration (R ) to N additions with R overall increasing at Capo Caccia and decreasing at El Regajal. This suggests that the response of R to N addition depends on dose and duration of N supply, and the existence of a threshold above which the N introduced in the ecosystem can affect the ecosystem's functioning. Soil cover and seasonality of precipitations also play a key role in determining the effects of N on R as shown by the different responses observed across seasons and in bare soil vs. the soil under canopy of the dominant species. These results show how increasing rates of N addition may influence soil C dynamics in semiarid ecosystems in the Mediterranean Basin and represent a valuable contribution for the understanding and the protection of Mediterranean ecosystems.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-017-8852-5DOI Listing

Publication Analysis

Top Keywords

soil respiration
12
soil
8
addition soil
8
mediterranean ecosystems
8
mediterranean basin
8
capo caccia
8
mediterranean
5
contrasting effects
4
effects nitrogen
4
addition
4

Similar Publications

Changes in winter precipitation accompanying emerging climate trends lead to a major carbon-climate feedback from Arctic tundra. However, the mechanisms driving the direction, magnitude, and form (CO and CH) of C fluxes and derived climate forcing (i.e.

View Article and Find Full Text PDF

Biodegradable chitosan-based films decorated with biosynthetic copper oxide nanoparticle for post-harvest tomato preservation.

Int J Biol Macromol

January 2025

School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China. Electronic address:

Postharvest fruit decay caused by pathogens is an important factor leading to product waste and economic losses, and fruit coating is considered an effective strategy to solve this problem due to its simple operation and effectiveness. In this study, nano modified chitosan film (CSC) was created by mixing chitosan (CS) and copper oxide nanoparticles (CuO NPs) synthesized using abandoned Ficus carica fruit. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectra indicated the formation of intermolecular interactions between CS and CuO NPs in the composite film.

View Article and Find Full Text PDF

In some peanut (Arachis hypogaea L.) producing regions, growth and photosynthesis-limiting low and high temperature extremes are common. Heat acclimation potential of photosynthesis and respiration is a coping mechanism that is species-dependent and should be further explored for peanut.

View Article and Find Full Text PDF

Organohalide respiration: retrospective and perspective through bibliometrics.

Front Microbiol

December 2024

Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, China.

Organohalide-respiring bacteria (OHRB) play a pivotal role in the transformation of organohalogens in diverse environments. This bibliometric analysis provides a timely overview of OHRB research trends and identifies knowledge gaps. Publication numbers have steadily increased since the process was discovered in 1982, with fluctuations in total citations and average citations per publication.

View Article and Find Full Text PDF

Soil microbial communities are vulnerable to anthropogenic disturbances such as climate change and land management decisions, thus altering microbially-mediated ecosystem functions. Increasingly, multiple stressors are considered in investigations of ecological response to disturbances. Typically, these investigations involve concurrent stressors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!