4-parvifuran inhibits metastatic and invasive actions through the JAK2/STAT3 pathway in osteosarcoma cells.

Arch Pharm Res

Department of Maxillofacial Tissue Regeneration, School of Dentistry and Research Center for Tooth & Periodontal Regeneration (MRC), Kyung Hee University, Seoul, 130-701, Republic of Korea.

Published: May 2017

This study was performed to examine the anticancer and anti-metastatic effects of 4-parvifuran (PVN), a novel flavonoid isolated from the heartwood of Dalbergia odorifera, and to study its underlying signaling pathway in human osteosarcoma cells. In the present study, PVN was found to inhibit cell proliferation in a concentration- and time-dependent manner in the human osteosarcoma cell lines studied (MG-63 and U-2 OS) and induce apoptosis, as evidenced by Annexin V and TUNEL cells. Cleaved poly (ADP-ribose) polymerase (PARP) and caspase-3 were up-regulated while anti-apoptotic proteins including Bcl-2, Bcl-xL, and survivin were down-regulated after treatment with PVN. Matrigel cell migration assay, invasion assay, and soft agar assay were used to show that PVN effectively suppressed cell migration and invasion and colony formation in osteosarcoma cells. Protein and mRNA levels of MMP-2 and MMP-9 were reduced by PVN in a concentration-dependent manner. Furthermore, PVN inhibited Janus kinase 2 (JAK2)/signal transducers and activators of transcription 3 (STAT3), mitogen-activated protein kinases (MAPKs) including JNK, ERK, p38 kinase, and cAMP response element-binding protein (CREB). Therefore, this is the first study to demonstrate that PVN might be a novel anticancer and anti-metastatic agent for the treatment of osteosarcoma through the inhibition of JAK2/STAT3, MAPKs, and CREB signaling pathways.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12272-017-0911-4DOI Listing

Publication Analysis

Top Keywords

osteosarcoma cells
12
cells study
8
anticancer anti-metastatic
8
pvn novel
8
human osteosarcoma
8
cell migration
8
pvn
7
osteosarcoma
5
4-parvifuran inhibits
4
inhibits metastatic
4

Similar Publications

Integrins identified as potential prognostic markers in osteosarcoma through multi-omics and multi-dataset analysis.

NPJ Precis Oncol

January 2025

Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi, China.

Osteosarcoma represents 20% of primary malignant bone tumors globally. Assessing its prognosis is challenging due to the complex roles of integrins in tumor development and metastasis. This study utilized 209,268 osteosarcoma cells from the GEO database to identify integrin-associated genes using advanced analysis methods.

View Article and Find Full Text PDF

This study aims to synthesize a new localized drug delivery system of bioglass, polyvinyl alcohol (PVA), cellulose (CNC), and sodium alginate (SA) beads as a carrier for methotrexate (MTX) drugs for the treatment of osteosarcoma. Methotrexate /Bioglass-loaded Polyvinyl/Cellulose/Sodium alginate biocomposite beads were prepared via the dropwise method with different concentrations of (65%SiO-30%CaO- 5%PO) bioglass. Samples were named B0, S0, S1, S2, and S3, respectively.

View Article and Find Full Text PDF

Background: () is associated with a variety of malignancies. However, the role of in osteosarcoma and its underlying mechanism are not yet fully understood. This study aimed to explore the role and the mechanism of in osteosarcoma.

View Article and Find Full Text PDF

Single-molecule toxicogenomics: Optical genome mapping of DNA-damage in nanochannel arrays.

DNA Repair (Amst)

January 2025

School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; Edmond J. Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv 6997801, Israel; Department of Biomedical Engineering, Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel. Electronic address:

Quantitative genomic mapping of DNA damage may provide insights into the underlying mechanisms of damage and repair. Sequencing based approaches are bound to the limitations of PCR amplification bias and read length which hamper both the accurate quantitation of damage events and the ability to map them to structurally complex genomic regions. Optical Genome mapping in arrays of parallel nanochannels allows physical extension and genetic profiling of millions of long genomic DNA fragments, and has matured to clinical utility for characterization of complex structural aberrations in cancer genomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!