Quinoa high nutritive value increases interest worldwide, especially as a crop that could potentially feature in different cropping systems, however, climate change, particularly rising temperatures, challenges this and other crop species. Currently, only limited knowledge exists regarding the grain yield and other key traits response to higher temperatures of this crop, especially to increased night temperatures. In this context, the main objective of this study was to evaluate the effect of increased night temperature on quinoa yield, grain number, individual grain weight and processes involved in crop growth under the environmental conditions (control treatment) and night thermal increase at two phases: flowering (T1) and grain filling (T2) in southern Chile. A commercial genotype, Regalona, and a quinoa accession (Cod. BO5, N°191, grain bank from Semillas Baer, hereby referred to as Accession) were used, due to their adaptability to Southern Chilean conditions and contrasting grain yield potential, grain weight and size of plants. Temperature was increased ≈4°C above the ambient from 8 pm until 9 am the next morning. Control treatments reached a high grain yield (600 and 397 g m, i.e., Regalona and Accession). Temperature increase reduced grain yield by 31% under T1 treatment and 12% when under T2 in Regalona and 23 and 26% in Accession, respectively. Aboveground biomass was negatively affected by the thermal treatments and a positive linear association was found between grain yield and aboveground biomass across treatments. By contrast, the harvest index was unaffected either by genotype, or by thermal treatments. Grain number was significantly affected between treatments and this key trait was linearly associated with grain yield. On the other hand, grain weight showed a narrow range of variation across treatments. Additionally, leaf area index was not affected, but significant differences were found in SPAD values at the end of T1 treatment, compared to control. Little change was found in the harvest index, individual grain weight, grain protein content or water soluble carbohydrates in response to the increased night temperature in this crop.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5362734PMC
http://dx.doi.org/10.3389/fpls.2017.00352DOI Listing

Publication Analysis

Top Keywords

grain yield
28
grain
17
increased night
16
grain weight
16
night temperature
12
grain number
12
yield
8
individual grain
8
aboveground biomass
8
thermal treatments
8

Similar Publications

Models and simulations of structural DNA nanotechnology reveal fundamental principles of self-assembly.

Chem Soc Rev

January 2025

Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.

DNA is not only a centrally important molecule in biology: the specificity of bonding that allows it to be the primary information storage medium for life has also allowed it to become one of the most promising materials for designing intricate, self-assembling structures at the nanoscale. While the applications of these structures are both broad and highly promising, the self-assembly process itself has attracted interest not only for the practical applications of designing structures with more efficient assembly pathways, but also due to a desire to understand the principles underlying self-assembling systems more generally, of which DNA-based systems provide intriguing and unique examples. Here, we review the fundamental physical principles that underpin the self-assembly process in the field of DNA nanotechnology, with a specific focus on simulation and modelling and what we can learn from them.

View Article and Find Full Text PDF

Oryza sativa is one of the most important crops and a food source for billions of people. Anthropic global warming, soil erosion, and unstable environmental conditions affect both its vegetative and reproductive growth, and consequently the final yield of its cultivation. The reproductive phase starts with the transition of apical meristem from vegetative to reproductive, which develops into a panicle, proceeds through the differentiation of the floret, and, after fertilization, the filling of the grain.

View Article and Find Full Text PDF

The development of transgressive segregant (TS) selection on convergent breeding populations of S4 maize is a concept that is rarely applied. However, the development of TS is necessary to accelerate maize breeding pipelines. Therefore, the objectives of this study were (1) to develop the concept of TS selection and (2) to select S4 TS maize to be developed as hybrid cross parents.

View Article and Find Full Text PDF

The gradual increase in the consumption of mineral nitrogen is leading to heightened levels of harmful air pollutants, particularly NO emissions from the agriculture sector. A potential solution to address the issues arising from the excessive use of urea in wheat is the substitution of conventional urea with nano urea. This study aimed to quantify the effects of nano urea, both independently and in conjunction with prilled urea, under various agroclimatic and sowing conditions in India.

View Article and Find Full Text PDF

Breeding of a new malting barley variety 'Satuiku 5 go' for Hokkaido exhibiting improved grain yield and malting quality.

Breed Sci

September 2024

Crop Research Laboratories, Sapporo Breweries Ltd., 37-1 Nittakizaki, Ota, Gunma 370-0321, Japan.

Hokkaido-specific malting barley varieties have been developed to improve the grain yield, disease resistance, malting quality, and brewing quality. In this report we describe the breeding and evaluation of brewing quality of a hulled two-row malting barley ( L.) variety 'Satuiku 5 go' lacking lipoxygenase-1 (LOX-1-less).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!