Distance measures play a central role in evolving the clustering technique. Due to the rich mathematical background and natural implementation of [Formula: see text] distance measures, researchers were motivated to use them in almost every clustering process. Beside [Formula: see text] distance measures, there exist several distance measures. Sargent introduced a special type of distance measures [Formula: see text] and [Formula: see text] which is closely related to [Formula: see text]. In this paper, we generalized the Sargent sequence spaces through introduction of [Formula: see text] and [Formula: see text] sequence spaces. Moreover, it is shown that both spaces are -spaces, and one is a dual of another. Further, we have clustered the two-moon dataset by using an induced [Formula: see text]-distance measure (induced by the Sargent sequence space [Formula: see text]) in the k-means clustering algorithm. The clustering result established the efficacy of replacing the Euclidean distance measure by the [Formula: see text]-distance measure in the k-means algorithm.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5360862 | PMC |
http://dx.doi.org/10.1186/s13660-017-1333-z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!