Brain and blood fatty acids (FA) are altered in Alzheimer's disease and cognitively impaired individuals, however, FA alterations in the preclinical phase, prior to cognitive impairment have not been investigated previously. The current study therefore evaluated erythrocyte FA in cognitively normal elderly participants aged 65-90 years via trans-methylation followed by gas chromatography. The neocortical beta-amyloid load (NAL) measured via positron emission tomography (PET) using ligand F-Florbetaben, was employed to categorise participants as low NAL (standard uptake value ratio; SUVR < 1.35, N = 65) and high NAL or preclinical AD (SUVR ≥ 1.35, N = 35) wherein, linear models were employed to compare FA compositions between the two groups. Increased arachidonic acid (AA, p < 0.05) and decreased docosapentaenoic acid (DPA, p < 0.05) were observed in high NAL. To differentiate low from high NAL, the area under the curve (AUC) generated from a 'base model' comprising age, gender, APOEε4 and education (AUC = 0.794) was outperformed by base model + AA:DPA (AUC = 0.836). Our findings suggest that specific alterations in erythrocyte FA composition occur very early in the disease pathogenic trajectory, prior to cognitive impairment. As erythrocyte FA levels are reflective of tissue FA, these alterations may provide insight into the pathogenic mechanism(s) of the disease and may highlight potential early diagnostic markers and therapeutic targets.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5429676 | PMC |
http://dx.doi.org/10.1038/s41598-017-00751-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!