Background And Purpose: This study evaluated the use of an artificial intelligence platform on mobile devices in measuring and increasing medication adherence in stroke patients on anticoagulation therapy. The introduction of direct oral anticoagulants, while reducing the need for monitoring, have also placed pressure on patients to self-manage. Suboptimal adherence goes undetected as routine laboratory tests are not reliable indicators of adherence, placing patients at increased risk of stroke and bleeding.

Methods: A randomized, parallel-group, 12-week study was conducted in adults (n=28) with recently diagnosed ischemic stroke receiving any anticoagulation. Patients were randomized to daily monitoring by the artificial intelligence platform (intervention) or to no daily monitoring (control). The artificial intelligence application visually identified the patient, the medication, and the confirmed ingestion. Adherence was measured by pill counts and plasma sampling in both groups.

Results: For all patients (n=28), mean (SD) age was 57 years (13.2 years) and 53.6% were women. Mean (SD) cumulative adherence based on the artificial intelligence platform was 90.5% (7.5%). Plasma drug concentration levels indicated that adherence was 100% (15 of 15) and 50% (6 of 12) in the intervention and control groups, respectively.

Conclusions: Patients, some with little experience using a smartphone, successfully used the technology and demonstrated a 50% improvement in adherence based on plasma drug concentration levels. For patients receiving direct oral anticoagulants, absolute improvement increased to 67%. Real-time monitoring has the potential to increase adherence and change behavior, particularly in patients on direct oral anticoagulant therapy.

Clinical Trial Registration: URL: http://www.clinicaltrials.gov. Unique identifier: NCT02599259.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5432369PMC
http://dx.doi.org/10.1161/STROKEAHA.116.016281DOI Listing

Publication Analysis

Top Keywords

artificial intelligence
20
intelligence platform
12
direct oral
12
patients
9
patients anticoagulation
8
anticoagulation therapy
8
adherence
8
oral anticoagulants
8
daily monitoring
8
adherence based
8

Similar Publications

Background: The impact of aortic arch (AA) morphology on the management of the procedural details and the clinical outcomes of the transfemoral artery (TF)-transcatheter aortic valve replacement (TAVR) has not been evaluated. The goal of this study was to evaluate the AA morphology of patients who had TF-TAVR using an artificial intelligence algorithm and then to evaluate its predictive value for clinical outcomes.

Materials And Methods: A total of 1480 consecutive patients undergoing TF-TAVR using a new-generation transcatheter heart valve at 12 institutes were included in this retrospective study.

View Article and Find Full Text PDF

Pancreatic surgery is considered one of the most challenging interventions by many surgeons, mainly due to retroperitoneal location and proximity to key and delicate vascular structures. These factors make pancreatic resection a demanding procedure, with successful rates far from optimal and frequent postoperative complications. Surgical planning is essential to improve patient outcomes, and in this regard, many technological advances made in the last few years have proven to be extremely useful in medical fields.

View Article and Find Full Text PDF

The widespread adoption of high-resolution computed tomography (CT) screening has led to increased detection of small pulmonary nodules, necessitating accurate localization techniques for surgical resection. This review examines the evolution, efficacy, and safety of various localization methods for small pulmonary nodules. Studies focusing on localization techniques for pulmonary nodules ≤30 mm in diameter were included, with emphasis on technical success rates and complication profiles.

View Article and Find Full Text PDF

Along with the rapid development of the digital economy and artificial intelligence, heat sinks available for immersion phase-change liquid cooling (IPCLC) of chips are facing huge challenges. Here, we design a high-performance IPCLC heat sink based on a copper microgroove/nanocone (MGNC) composite structure. Maximal heat fluxes () of the MGNC structure, microgroove structure, and flat copper reach 112.

View Article and Find Full Text PDF

Virtual 3D reconstruction of complex congenital cardiac anatomy from 3D rotational angiography.

3D Print Med

January 2025

Department of Pediatric Cardiology, The Heart Institute, University of Colorado, Children's Hospital Colorado, 13123 E 16th Ave B100, 80045, Aurora, CO, USA.

Background: Despite advancements in imaging technologies, including CT scans and MRI, these modalities may still fail to capture intricate details of congenital heart defects accurately. Virtual 3D models have revolutionized the field of pediatric interventional cardiology by providing clinicians with tangible representations of complex anatomical structures. We examined the feasibility and accuracy of utilizing an automated, Artificial Intelligence (AI) driven, cloud-based platform for virtual 3D visualization of complex congenital heart disease obtained from 3D rotational angiography DICOM images.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!