Background: Semaglutide is a novel glucagon-like peptide-1 (GLP-1) analogue, suitable for once-weekly subcutaneous administration, in development for treatment of type 2 diabetes. We assessed the efficacy and safety of semaglutide versus the dipeptidyl peptidase-4 (DPP-4) inhibitor sitagliptin in patients with type 2 diabetes inadequately controlled on metformin, thiazolidinediones, or both.
Methods: We did a 56-week, phase 3a, randomised, double-blind, double-dummy, active-controlled, parallel-group, multinational, multicentre trial (SUSTAIN 2) at 128 sites in 18 countries. Eligible patients were aged at least 18 years (or at least 20 years in Japan) and diagnosed with type 2 diabetes, with insufficient glycaemic control (HbA 7·0-10·5% [53·0-91·0 mmol/mol]) despite stable treatment with metformin, thiazolidinediones, or both. We randomly assigned participants (2:2:1:1) using an interactive voice or web response system to 56 weeks of treatment with subcutaneous semaglutide 0·5 mg once weekly plus oral sitagliptin placebo once daily, subcutaneous semaglutide 1·0 mg once weekly plus oral sitagliptin placebo once daily, oral sitagliptin 100 mg once daily plus subcutaneous semaglutide placebo 0·5 mg once weekly, or oral sitagliptin 100 mg once daily plus subcutaneous semaglutide placebo 1·0 mg once weekly. The two oral sitagliptin 100 mg groups (with semaglutide placebo 0·5 mg and 1·0 mg) were pooled for the analyses. The primary endpoint was change in HbA from baseline to week 56, assessed in the modified intention-to-treat population (all randomly assigned participants who received at least one dose of study drug); change in bodyweight from baseline to week 56 was the confirmatory secondary endpoint. Safety endpoints included adverse events and hypoglycaemic episodes. This trial is registered with ClinicalTrials.gov, number NCT01930188.
Findings: Between Dec 2, 2013, and Aug 5, 2015, we randomly assigned 1231 participants; of the 1225 included in the modified intention-to-treat analysis, 409 received semaglutide 0·5 mg, 409 received semaglutide 1·0 mg, and 407 received sitagliptin 100 mg. Mean baseline HbA was 8·1% (SD 0·93); at week 56, HbA was reduced by 1·3% in the semaglutide 0·5 mg group, 1·6% in the semaglutide 1·0 mg group, and 0·5% with sitagliptin (estimated treatment difference vs sitagliptin -0·77% [95% CI -0·92 to -0·62] with semaglutide 0·5 mg and -1·06% [-1·21 to -0·91] with semaglutide 1·0 mg; p<0·0001 for non-inferiority and for superiority, for both semaglutide doses vs sitagliptin). Mean baseline bodyweight was 89·5 kg (SD 20·3); at week 56, bodyweight reduced by 4·3 kg with semaglutide 0·5 mg, 6·1 kg with semaglutide 1·0 mg, and 1·9 kg with sitagliptin (estimated treatment difference vs sitagliptin -2·35 kg [95% CI -3·06 to -1·63] with semaglutide 0·5 mg and -4·20 kg [-4·91 to -3·49] with semaglutide 1·0 mg; p<0·0001 for superiority, for both semaglutide doses vs sitagliptin). The proportion of patients who discontinued treatment because of adverse events was 33 (8%) for semaglutide 0·5 mg, 39 (10%) for semaglutide 1·0 mg, and 12 (3%) for sitagliptin. The most frequently reported adverse events in both semaglutide groups were gastrointestinal in nature: nausea was reported in 73 (18%) who received semaglutide 0·5 mg, 72 (18%) who received semaglutide 1·0 mg, and 30 (7%) who received placebo, and diarrhoea was reported in 54 (13%) who received semaglutide 0·5 mg, 53 (13%) who received semaglutide 1·0 mg, and 29 (7%) who received placebo. Seven (2%) patients in the semaglutide 0·5 mg group, two (<1%) in the semaglutide 1·0 mg group, and five (1%) in the sitagliptin group had blood-glucose confirmed hypoglycaemia. There were six fatal events (two in the semaglutide 0·5 mg group, one in the semaglutide 1·0 mg group, and three in the sitagliptin group); none were considered likely to be related to the trial drugs.
Interpretation: Once-weekly semaglutide was superior to sitagliptin at improving glycaemic control and reducing bodyweight in participants with type 2 diabetes on metformin, thiazolidinediones, or both, and had a similar safety profile to that of other GLP-1 receptor agonists. Semaglutide seems to be an effective add-on treatment option for this patient population.
Funding: Novo Nordisk A/S.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/S2213-8587(17)30092-X | DOI Listing |
J Med Chem
January 2025
School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
GPR119 has emerged as a promising target for treating type 2 diabetes and associated obesity, as its stimulation induces the secretion of glucagon-like peptide-1 and glucose-dependent insulinotropic peptide in the intestinal tract as well as the glucose-dependent release of insulin in pancreatic β-cells. We describe the design and synthesis of novel GPR119 agonists containing a 1,4-disubstituted cyclohexene scaffold. Compound displayed nanomolar potency (EC = 3.
View Article and Find Full Text PDFDiabetes Ther
January 2025
First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical, University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Jinan, China.
Introduction: More than half of diabetes patients are Asians, and their tolerance to antidiabetic drugs may differ from that of non-Asians. Oral semaglutide has recently gained attention for its advantages in glycemic and body weight control. However, its effects across different ethnic groups remain unknown.
View Article and Find Full Text PDFAm J Case Rep
January 2025
Medical School, University of Western Australia, Fremantle, Western Australia, Australia.
BACKGROUND Although hypomagnesemia is common in type 2 diabetes, clinical presentations with severe hypomagnesemia are rare. A number of oral blood glucose-lowering medications can reduce serum magnesium concentrations, and several severe cases have been reported in the presence of marked glucagon-like peptide-1 receptor agonist (GLP-1RA)-associated gastrointestinal adverse effects. In the present case, an acute presentation with severe hypomagnesemia was likely due to polypharmacy including semaglutide, albeit with a delayed relationship to discontinuation of this GLP-1RA, due to nausea and vomiting.
View Article and Find Full Text PDFJ Biomol Struct Dyn
December 2024
Department of Pharmaceutical Chemistry, Dr. D. Y. Patil Institute of Pharmaceutical Science and Research, affiliated to SPPU, Pune, India.
Diabetes mellitus remains a global challenge, with Type 2 Diabetes Mellitus (T2DM) prevalence increasing from 4% to 6.4% in the past 30 years. Presently oral hypoglycaemic agents like GLP-1 agonists, biguanides, sulphonylureas, glinides, and thiazolidinediones are employed in clinical practice.
View Article and Find Full Text PDFPLoS One
November 2024
Department of Pharmacy Practice, College of Clinical Pharmacy, King Faisal University, Al Ahsa, Saudi Arabia.
Introduction: Type II Diabetes mellitus (T2DM) patients often do not achieve glycemic control with oral hypoglycemic agents (OHAs). There are two main approaches to address this challenge: transitioning to a triple OHA regimen, or adding Insulin to the existing dual OHA regimen.
Aim: This study aimed to compare the efficacy of adding Insulin to dual OHAs (Sitagliptin + Metformin) against adding a third OHA to Sitagliptin + Metformin in achieving glycemic control among patients with uncontrolled T2DM.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!