Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcin.2017.01.038DOI Listing

Publication Analysis

Top Keywords

bioresorbable vascular
4
vascular scaffolds
4
scaffolds treatment
4
treatment option
4
option left
4
left main
4
main lesions
4
bioresorbable
1
scaffolds
1
treatment
1

Similar Publications

Bioresorbable Vascular Scaffolds Journey: A New Brick Into a Still Dismantled Wall.

JACC Cardiovasc Interv

January 2025

Hospital Clínic, Cardiovascular Clinic Institute, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.

View Article and Find Full Text PDF

Absorb Bioresorbable Vascular Scaffold: A Little Too Late.

JACC Cardiovasc Interv

January 2025

Brown University Health Cardiovascular Institute and the Division of Cardiology, Department of Medicine, Alpert Medical School, Providence, Rhode Island, USA. Electronic address:

View Article and Find Full Text PDF

Background: The risk-benefit ratio of the Absorb bioresorbable vascular scaffold (BVS) may vary before and after 3 years, the time point of complete bioresorption of the poly-L-lactic acid scaffold.

Objectives: The aim of this study was to determine the time-varying outcomes of the Absorb BVS compared with cobalt-chromium everolimus-eluting stents (EES) from a large individual-patient-data pooled analysis of randomized trials.

Methods: The individual patient data from 5 trials that randomized 5,988 patients undergoing percutaneous coronary intervention to the Absorb BVS vs EES with 5-year follow-up were pooled.

View Article and Find Full Text PDF

Modification of polylactic acid (PLA) is a promising strategy for the next generation of bioresorbable vascular stent biomaterials. With this focus, FeMOFs nanoparticles was incorporated in PLA, and then post loading of carbon monoxide (CO) was performed by pressurization. It showed FeMOFs incorporation increased hydrophilicity of the surface and CO loading, and CO release was sustained at least for 3 days.

View Article and Find Full Text PDF

Recent Advances in Polyurethane for Artificial Vascular Application.

Polymers (Basel)

December 2024

College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430070, China.

Artificial blood vessels made from polyurethane (PU) have been researched for many years but are not yet in clinical use. The main reason was that the PU materials are prone to degradation after contact with blood and will also cause inflammation after long-term implantation. At present, PU has made progress in biostability and biocompatibility, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!