A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Comparative study on serum levels of macro and trace elements in schizophrenia based on supervised learning methods. | LitMetric

Comparative study on serum levels of macro and trace elements in schizophrenia based on supervised learning methods.

J Trace Elem Med Biol

Center of Medical & Health Analysis, School of Public Health, Peking University, Beijing 100191, China. Electronic address:

Published: September 2017

The etiology and pathophysiology of schizophrenia (SCZ) remain obscure. This study explored the associations between SCZ risk and serum levels of 39 macro and trace elements (MTE). A 1:1 matched case-control study was conducted among 114 schizophrenia patients and 114 healthy controls matched by age, sex and region. Blood samples were collected to determine the concentrations of 39 MTE by ICP-AES and ICP-MS. Both supervised learning methods and classical statistical testing were used to uncover the difference of MTE levels between cases and controls. The best prediction accuracies were 99.21% achieved by support vector machines in the original feature space (without dimensionality reduction), and 98.82% achieved by Naive Bayes with dimensionality reduction. More than half of MTE were found to be significantly different between SCZ patients and the controls. The presented investigation showed that there existed remarkable differences in concentrations of MTE between SCZ patients and healthy controls. The results of this study might be useful to diagnosis and prognosis of SCZ; they also indicated other promising applications in pharmacy and nutrition. However, the results should be interpreted with caution due to limited sample size and the lack of potential confounding factors, such as alcohol, smoking, body mass index (BMI), use of antipsychotics and dietary intakes. In the future the application of the analyses will be useful in designs that have larger sample sizes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jtemb.2017.03.010DOI Listing

Publication Analysis

Top Keywords

serum levels
8
levels macro
8
macro trace
8
trace elements
8
supervised learning
8
learning methods
8
healthy controls
8
concentrations mte
8
dimensionality reduction
8
mte scz
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!