Study on the applicability of dynamic light scattering (DLS) to microemulsions including supercritical carbon dioxide-swollen micelles.

J Colloid Interface Sci

Professur für Advanced Optical Technologies - Thermophysical Properties, Department of Chemical and Biological Engineering (CBI), Friedrich-Alexander-Universität Erlangen-Nürnberg, Paul-Gordan-Straβe 6, 91052 Erlangen, Germany; Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-Universität Erlangen-Nürnberg, Paul-Gordan-Straβe 6, 91052 Erlangen, Germany. Electronic address:

Published: August 2017

The applicability of dynamic light scattering (DLS) for the characterization of the size of supercritical carbon dioxide (sc-CO)-swollen micelles in a polyester polyol-based multicomponent microemulsion with nonionic surfactant has been thoroughly proved for the first time in this work. Systematic experiments confirming that a hydrodynamic mode is observable in either a homodyne or a heterodyne detection scheme as well as the evaluation of the influence of the laser power applied to the slightly colored microemulsion have ensured an accurate implementation of this technique for a technically relevant system. The correlation times associated with the translational diffusion coefficient of the swollen micelles in a continuous liquid phase were measured for temperatures from (298.15 to 338.15)K at pressures of (90 and 100)bar. While there was no significant effect of pressure, it was found that the translational diffusion coefficient increases with increasing temperature as expected. We postulate this is primarily related to the effect of decreasing viscosity of the continuous phase. An estimation of the hydrodynamic diameter of the sc-CO-swollen micelles is in good agreement with values for similar systems reported in the literature. For the derivation of absolute sizes for corresponding systems, also dynamic viscosity and refractive index data will be determined simultaneously in a currently developed closed experimental loop.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2017.03.111DOI Listing

Publication Analysis

Top Keywords

applicability dynamic
8
dynamic light
8
light scattering
8
scattering dls
8
supercritical carbon
8
sc-co-swollen micelles
8
translational diffusion
8
diffusion coefficient
8
study applicability
4
dls microemulsions
4

Similar Publications

Trigger valves are fundamental features in capillary-driven microfluidic systems that stop fluid at an abrupt geometric expansion and release fluid when there is flow in an orthogonal channel connected to the valve. The concept was originally demonstrated in closed-channel capillary circuits. We show here that trigger valves can be successfully implemented in open channels.

View Article and Find Full Text PDF

The Epstein-Barr virus (EBV) is widespread and has been related to a variety of malignancies as well as infectious mononucleosis. Despite the lack of a vaccination, antiviral medications offer some therapy alternatives. The EBV BZLF1 gene significantly impacts viral replication and infection severity.

View Article and Find Full Text PDF

Cognitive load (CL) is one of the leading factors moderating states and performance among drivers. Heavily increased CL may contribute to the development of mental stress. Averaged heart rate (HR) and heart rate variability (HRV) indices are shown to reflect CL levels in different tasks.

View Article and Find Full Text PDF

Microenvironmental modulation breaks intrinsic pH limitations of nanozymes to boost their activities.

Nat Commun

December 2024

College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, China.

Functional nanomaterials with enzyme-mimicking activities, termed as nanozymes, have found wide applications in various fields. However, the deviation between the working and optimal pHs of nanozymes has been limiting their practical applications. Here we develop a strategy to modulate the microenvironmental pHs of metal-organic framework (MOF) nanozymes by confining polyacids or polybases (serving as Brønsted acids or bases).

View Article and Find Full Text PDF

In this article, a nonlinear fractional bi-susceptible [Formula: see text] model is developed to mathematically study the deadly Coronavirus disease (Covid-19), employing the Atangana-Baleanu derivative in Caputo sense (ABC). A more profound comprehension of the system's intricate dynamics using fractional-order derivative is explored as the primary focus of constructing this model. The fundamental properties such as positivity and boundedness, of an epidemic model have been proven, ensuring that the model accurately reflects the realistic behavior of disease spread within a population.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!