Lipopolysaccharide (LPS)-binding protein (LBP) as an acute-phase protein plays a crucial role in innate host response to bacterial challenge. Our previous study shows that LBP expression in human gingiva is associated with periodontal status. Porphyromonas gingivalis is a keystone periodontopathogen, and its LPS with lipid A structural heterogeneity critically accounts for periodontal pathogenesis. This study investigated the effects of LBP and its interactions with two featured isoforms of P. gingivalis LPS (tetra-acylated LPS1435/1449 and penta-acylated LPS1690) on the expression of pro-inflammatory cytokines in human oral keratinocytes (HOKs), and the involvement of Toll-like receptor (TLR) signaling. HOKs were pre-incubated with recombinant human LBP (rhLBP) at 10ng/ml, 100ng/ml and 1μg/ml for 1 h, followed by the treatment of P. gingivalis LPS1690 or LPS1435/1449 for 3h or 24h respectively. The expression of IL-6 and IL-8, and involvements of TLR2 and TLR4 were analyzed. The genes associated with TLR signaling were assessed by PCR array. Interestingly, rhLBP per se significantly up-regulated the expression of IL-6 and IL-8 in HOKs (p<0.05), which was blocked by TLR2 antibody (p<0.001). LPS1435/1449 down-regulated more significantly rhLBP-induced IL-6 and IL-8 mRNAs with reference to P. gingivalis LPS1690 (approximately 80% vs. 40%, p<0.05; and 90% vs. 36%, p<0.001, respectively). Moreover, rhLBP markedly down-regulated the gene expression of TLRs and their adaptors such as CD180 (-2.44 folds) and MD-1 (-9.62 folds), while the interaction of P. gingivalis LPS1435/1449 with rhLBP greatly up-regulated both transcripts (7.11 and 4.05 folds, respectively). Notably, P. gingivalis LPS1690-rhLBP interaction dramatically up-regulated CD180 transcript (20.86 folds) and significantly down-regulated MD-1 transcript (-6.93 folds). This pioneering study shows that rhLBP enables to enhance the expression of pro-inflammatory cytokines in HOKs through TLR2 signaling pathway. P. gingivalis LPS with different lipid A structures down-regulates to different extents rhLBP-induced cytokine expression, possibly through fine-tuning of the CD180-MD1 complex and relevant TLRs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5383028 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0173223 | PLOS |
J Clin Periodontol
January 2025
Department of Oral Implantology, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China.
Aim: To explore the potential roles of mitochondrial dysfunction in the initiation of inflammation in periodontal macrophages and to determine the mechanism underlying the involvement of dynamin-related protein 1 (Drp1) in macrophage inflammatory responses through its interaction with hexokinase 1 (HK1).
Materials And Methods: Gingival tissues were collected from patients diagnosed with periodontitis or from healthy volunteers. Drp1 tetramer formation and phosphorylation were analysed using western blot.
Adv Healthc Mater
January 2025
School of Dentistry, Center for Oral-facial Regeneration, Rehabilitation and Reconstruction (COR3), Epigenetics nanodiagnostic and therapeutic group, The University of Queensland, Brisbane, QLD, 4006, Australia.
With the advent of multi-layered and 3D scaffolds, the understanding of microbiome composition and pathogenic mechanisms within polymicrobial biofilms is continuously evolving. A fundamental component in mediating the microenvironment and bacterial-host communication within the biofilm are bilayered nanoparticles secreted by bacteria, known as bacterial extracellular vesicles (BEVs), which transport key biomolecules including proteins, nucleic acids, and metabolites. Their characteristics and microbiome profiles are yet to be explored in the context of in vitro salivary polymicrobial biofilm.
View Article and Find Full Text PDFFEBS J
December 2024
Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Orthodontics, Stomatological Hospital and Dental School, Tongji University, Shanghai, China.
Premature accumulation of senescent cells results in tissue destruction, and it is one of the potential primary mechanisms underlying the accelerated progression of diabetes and periodontitis. However, whether this characterized phenomenon could account for periodontal pathogenesis under hyperglycemic conditions remains unclear. In this study, we assessed the senescent phenotypic changes in experimental periodontitis under hyperglycemic conditions.
View Article and Find Full Text PDFBiochem Pharmacol
December 2024
Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Periodontics, Shanghai Tongji Stomatological Hospital and Dental School, Tongji University, Shanghai 200072, China.
Periodontitis is a chronic inflammatory disease influenced by macrophage polarization. Additionally, succinylation-enriched Porphyromonas gingivalis is a pathogenic factor of periodontitis. However, the role of succinylation in the pathogenesis of periodontitis remains unclear.
View Article and Find Full Text PDFInt Endod J
December 2024
Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.
Aim: Cannabidiol (CBD), derived from the Cannabis sativa plant, exhibits benefits in potentially alleviating a number of oral and dental pathoses, including pulpitis and periodontal diseases. This study aimed to explore the impact of CBD on several traits of human dental pulp stem cells (hDPSC), such as their proliferation, apoptosis, migration and odonto/osteogenic differentiation.
Methodology: hDPSCs were harvested from human dental pulp tissues.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!