Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Exemplar theory assumes that people categorize a novel object by comparing its similarity to the memory representations of all previous exemplars from each relevant category. Exemplar theory has been the most prominent cognitive theory of categorization for more than 30 years. Despite its considerable success in providing good quantitative fits to a wide variety of accuracy data, it has never had a detailed neurobiological interpretation. This article proposes a neural interpretation of exemplar theory in which category learning is mediated by synaptic plasticity at cortical-striatal synapses. In this model, categorization training does not create new memory representations, rather it alters connectivity between striatal neurons and neurons in sensory association cortex. The new model makes identical quantitative predictions as exemplar theory, yet it can account for many empirical phenomena that are either incompatible with or outside the scope of the cognitive version of exemplar theory. (PsycINFO Database Record
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5481458 | PMC |
http://dx.doi.org/10.1037/rev0000064 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!