Alzheimer's disease (AD) is an age-related neurodegenerative disorder characterized by aggregation of toxic forms of amyloid β peptide (Aβ). Treatment strategies have largely been focused on inhibiting the enzymes (β- and γ-secretases) that liberate Aβ from the amyloid precursor protein (APP). While evidence suggests that individuals who exercise regularly are at reduced risk for AD and studies of animal models demonstrate that running can ameliorate brain Aβ pathology and associated cognitive deficits, the underlying mechanisms are unknown. However, considerable evidence suggests that brain-derived neurotrophic factor (BDNF) mediates beneficial effects of exercise on neuroplasticity and cellular stress resistance. Here, we tested the hypothesis that BDNF promotes non-amyloidogenic APP processing. Using a transgenic mouse model of Alzheimer's disease and cultured human neural cells, we demonstrate that exercise and BDNF reduce production of toxic Aβ peptides through a mechanism involving enhanced α-secretase processing of APP. This anti-amyloidogenic APP processing involves subcellular redistribution of α-secretase and an increase in intracellular neuroprotective APP peptides capable of binding and inhibiting β-secretase. Moreover, our results suggest that BDNF's ability to promote neurite outgrowth is primarily exerted through pathways other than APP processing. Exercise and other factors that enhance BDNF signaling may therefore have both therapeutic and prophylactic value in the battle against AD. Read the Editorial Highlight for this article on page 191.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5498234 | PMC |
http://dx.doi.org/10.1111/jnc.14034 | DOI Listing |
Phytochem Anal
January 2025
College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.
Introduction: As a widely used Chinese herbal medicine, Mume Fructus pulp (MFP) has rich nutritional value and biological activity, but its quality control research is relatively scarce.
Objectives: The objective of the study was to evaluate the quality difference between MFPs from different origins and its adulterant apricot pulp (APP), and to identify potential quality markers.
Methods: The chemical compositions were identified by untargeted metabolomics analysis based on ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry combined with feature-based molecular networking.
Anaesthesiologie
January 2025
Abteilung für Anästhesie und operative Intensivmedizin, Krankenhaus Vilshofen, Vilshofen, Deutschland.
Background: The electronic cognitive aid for emergencies in anesthesia (eGENA) is an app that offers digital support in anesthesiological emergency situations as a cognitive aid tool via checklists for memory and making decisions. The eGENA was published by the German Society of Anesthesiology and has been implemented in the emergency management of the anesthesiological team of the clinic in Potsdam, Germany.
Objective: The primary endpoint was to observe the influence of eGENA on the anesthesiological emergency management on the subjective feeling of assurance as well as on quality of treatment and, therefore, patient safety.
Sci Rep
January 2025
School of Mathematics and Systems Science, Guangdong Polytechnic Normal University, No. 293, Zhongshan Avenue West, Tianhe District, Guangzhou, 510665, China.
Due to the lack of efficient mpox diagnostic technology, mpox cases continue to increase. Recently, the great potential of deep learning models in detecting mpox and non-mpox has been proven. However, existing methods are susceptible to interference from various noises in real-world settings, require diverse non-mpox images, and fail to detect abnormal input, which makes them unsuitable for practical deployment and application.
View Article and Find Full Text PDFMedicine (Baltimore)
January 2025
Department of Traditional Chinese Medicine, Shanghai Fourth People's Hospital Affiliated to Tongji University of Medicine, Shanghai, China.
Based on network pharmacology and molecular docking methods, this study explored its active compounds and confirmed its potential mechanism of action against Hand-foot skin reaction induced by tumor-targeted drugs. Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform and UniProt Database were used to obtain the active ingredients and target proteins of Spatholobi Caulis. All hand-foot skin reaction (HFSR)-related targets were obtained with the help of the Human Gene Database, Online Mendelian Inheritance in Humans (OMIM), DisGeNET and DrugBank databases.
View Article and Find Full Text PDFPhytomedicine
January 2025
Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Henan Province, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China; Collaborative Innovation Center of Research and Development on the whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China. Electronic address:
Background: Shenghui Decoction (SHD) is a frequently utilized traditional Chinese medicine formula in clinical settings for addressing cognitive impairment in elderly individuals. Nevertheless, the precise mechanism by which SHD exerts its effects on the most prevalent form of dementia, Alzheimer's disease (AD), remains to be elucidated.
Methods: Temperature-induced transgenic C.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!