Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Human adipose-derived microvascular endothelial cells (HAMEC) and mesenchymal stem cells (MSC) have been shown to bear angiogenic and vasculogenic capabilities. We hypothesize that co-culturing HAMEC:MSC on a porous biodegradable scaffold in vitro, later implanted as a graft around femoral blood vessels in a rat, will result in its vascularization by host vessels, creating a functional vascular flap that can effectively treat a range of large full-thickness soft tissue defects. HAMEC were co-cultured with MSC on polymeric three-dimensional porous constructs. Grafts were then implanted around the femoral vessels of a rat. To ensure vessel sprouting from the main femoral vessels, grafts were pre-isolated from the surrounding tissue. Graft vascularization was monitored to confirm full vascularization before flap transfer. Flaps were then transferred to treat both abdominal wall and exposed bone and tendon of an ankle defects. Flaps were analysed to determine vascular properties in terms of maturity, functionality and survival of implanted cells. Findings show that pre-isolated grafts bearing the HAMEC:MSC combination promoted formation of highly vascularized flaps, which were better integrated in both defect models. The results of this study show the essentiality of a specific adipose-derived cell combination in successful graft vascularization and integration, two processes crucial for flap survival. Copyright © 2017 John Wiley & Sons, Ltd.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/term.2436 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!