Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The monogenic defects in specific lysosomal enzymes in mucopolysaccharidosis (MPS) III lead to lysosomal storage of glycosaminoglycans and complex CNS and somatic pathology, for which the detailed mechanisms remain unclear. In this study, serum samples from patients with MPS IIIA (age 2-9 yr) and MPS IIIB (2-13 yr) and healthy controls (age 2-9 yr) were assayed by global metabolomics profiling of 658 metabolites using mass spectrometry. Significant alterations were detected in 423 metabolites in all MPS III patients, of which 366 (86.5%) decreased and 57 (13.5%) increased. Similar profiles were observed when analyzing data from MPS IIIA and MPS IIIB samples separately, with only limited age variations in 36 metabolites. The observed metabolic disturbances in MPS III patients involve virtually all major pathways of amino acid (101/150), peptide (17/21), carbohydrate (19/23), lipid (221/325), nucleotide (15/25), energy (8/9), vitamins and co-factors (8/21), and xenobiotics (34/84) metabolism. Notably, detected serum metabolite decreases involved all key amino acids, all major neurotransmitter pathways, and broad neuroprotective compounds. The elevated metabolites are predominantly lipid derivatives, and also include cysteine metabolites and a fibrinogen peptide fragment, consistent with the status of oxidative stress and inflammation in MPS III. This study demonstrates that the lysosomal glycosaminoglycans storage triggers profound metabolic disturbances in patients with MPS III disorders, leading to severe functional depression of virtually all metabolic pathways, which emerge early during the disease progression. Serum global metabolomics profiling may provide an important and minimally invasive tool for better understanding the disease mechanisms and identification of potential biomarkers for MPS III.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11011-017-0009-1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!