Probiotic SC06 Induces Autophagy to Protect against Pathogens in Macrophages.

Front Microbiol

Key Laboratory of Molecular Animal Nutrition of Ministry of Education, Institute of Feed Science, College of Animal Sciences, Zhejiang University Hangzhou, China.

Published: March 2017

Probiotics are increasingly applied in popularity in both humans and animals. Decades of research has revealed their beneficial effects, including the immune modulation in intestinal pathogens inhibition. Autophagy-a cellular process that involves the delivery of cytoplasmic proteins and organelles to the lysosome for degradation and recirculation-is essential to protect cells against bacterial pathogens. However, the mechanism of probiotics-mediated autophagy and its role in the elimination of pathogens are still unknown. Here, we evaluated SC06 (Ba)-induced autophagy and its antibacterial activity against () in murine macrophage cell line RAW264.7 cells. Western blotting and confocal laser scanning analysis showed that Ba activated autophagy in a dose- and time-dependent manner. Ba-induced autophagy was found to play a role in the elimination of intracellular bacteria when RAW264.7 cells were challenged with . Ba induced autophagy by increasing the expression of Beclin1 and complex, but not the AKT/mTOR signaling pathway. Moreover, Ba pretreatment attenuated the activation of JNK in RAW264.7 cells during infection, further indicating a protective role for probiotics via modulating macrophage immunity. The above findings highlight a novel mechanism underlying the antibacterial activity of probiotics. This study enriches the current knowledge on probiotics-mediated autophagy, and provides a new perspective on the prevention of bacterial infection in intestine, which further the application of probiotics in food products.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5360707PMC
http://dx.doi.org/10.3389/fmicb.2017.00469DOI Listing

Publication Analysis

Top Keywords

raw2647 cells
12
probiotics-mediated autophagy
8
role elimination
8
ba-induced autophagy
8
antibacterial activity
8
autophagy
7
probiotic sc06
4
sc06 induces
4
induces autophagy
4
autophagy protect
4

Similar Publications

Jinyinqingre Oral Liquid alleviates LPS-induced acute lung injury by inhibiting the NF-κB/NLRP3/GSDMD pathway.

Chin J Nat Med

June 2023

School of Pharmaceutical Sciences, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China. Electronic address:

Acute lung injury (ALI) is a prevalent and severe clinical condition characterized by inflammatory damage to the lung endothelial and epithelial barriers, resulting in high incidence and mortality rates. Currently, there is a lack of safe and effective drugs for the treatment of ALI. In a previous clinical study, we observed that Jinyinqingre oral liquid (JYQR), a Traditional Chinese Medicine formulation prepared by the Taihe Hospital, Affiliated Hospital of Hubei University of Medicine, exhibited notable efficacy in treating inflammation-related hepatitis and cholecystitis in clinical settings.

View Article and Find Full Text PDF

Fasting protects liver from ischemic injury through Sirt1-mediated downregulation of circulating HMGB1 in mice.

J Hepatol

August 2014

Swiss Hepato-Pancreatico-Biliary Center, Department of Surgery, University Hospital Zürich, CH-8091 Zürich, Switzerland. Electronic address:

Background & Aims: Fasting and calorie restriction are associated with a prolonged life span and an increased resistance to stress. The protective effects of fasting have been exploited for the mitigation of ischemic organ injury, yet the underlying mechanisms remain incompletely understood. Here, we investigated whether fasting protects liver against ischemia reperfusion (IR) through energy-preserving or anti-inflammatory mechanisms.

View Article and Find Full Text PDF

Objective: To investigate the effect of RNA interfering TLR4 signal pathway on phagocytosis of Kupffer cells.

Methods: RAW2647 mice mononuclear macrophage leukemia cells were observed. The tested group was interfered by Tlr4-mus-1567 RNA which had the best result confirmed by QPCR, cells interfered by Negative Control RNA as NC group, and normal cell as control.

View Article and Find Full Text PDF

Coordinate regulation of TLR-mediated arachidonic acid mobilization in macrophages by group IVA and group V phospholipase A2s.

J Immunol

March 2009

Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Valladolid, Spain.

Macrophages can be activated through TLRs for a variety of innate immune responses. In contrast with the wealth of data existing on TLR-dependent gene expression and resultant cytokine production, very little is known on the mechanisms governing TLR-mediated arachidonic acid (AA) mobilization and subsequent eicosanoid production. We have previously reported the involvement of both cytosolic group IVA phospholipase A(2) (cPLA(2)) and secreted group V phospholipase A(2) (sPLA(2)-V) in regulating the AA mobilization response of macrophages exposed to bacterial LPS, a TLR4 agonist.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!