As of 2012, liver cancer was the second leading cause of death worldwide, and hepatocellular carcinoma is the most common primary cancer of the liver. The identification of molecules that might be molecular markers or therapeutic targets is urgently needed to improve clinical management. Based on a microarray analysis performed in our laboratory, we selected six genes-namely, ANXA2, DYNLT1, PFKP, PLA2G7, KRT19, and SNX10-as candidates for validation as tumor markers of liver cancer in a rat model. Their patterns of overexpression in preneoplastic lesions and established tumors at 10 different time points between 24 h and 18 months were analyzed to identify putative tumor markers for further studies. We validated the microarray results by quantitative reverse transcription polymerase chain reaction, which revealed high transcriptional expression for five of the genes, consistent with their high protein expression during cancer progression reported in the literature. However, studies of the association of sorting nexin 10 with different types of cancer are limited, prompting further study. The characterization of sorting nexin 10 in preneoplastic lesions and established tumors revealed messenger RNA overexpression and a simultaneous decrease in sorting nexin 10 protein expression. A group of microRNAs related to sorting nexin 10 messenger RNA were selected based on a data analysis conducted using miRDB and microrna.org . An analysis of the expression of these microRNAs revealed an increase in the transcription of microRNA-30d whenever the sorting nexin 10 protein was downregulated. These results suggest that sorting nexin 10 is a potential liver cancer marker exhibiting characteristics of a putative suppressor protein that is likely regulated by microRNA-30d.

Download full-text PDF

Source
http://dx.doi.org/10.1177/1010428317695932DOI Listing

Publication Analysis

Top Keywords

sorting nexin
28
liver cancer
16
cancer progression
8
tumor markers
8
preneoplastic lesions
8
lesions established
8
established tumors
8
protein expression
8
messenger rna
8
nexin protein
8

Similar Publications

Diabetic foot ulcer (DFU) is a common and severe complication of diabetes mellitus, the etiology of which remains insufficiently understood, particularly regarding the involvement of extracellular vesicles (EVs). In this study, nanoflow cytometry to detect EVs in DFU skin tissues is used and found a significant increase in the Translocase of Outer Mitochondrial Membrane 20 (TOM20) mitochondrial-derived vesicles (MDVs). The role of MDVs in DFU is yet to be reported.

View Article and Find Full Text PDF

EhVps35, a retromer component, is involved in the recycling of the EhADH and Gal/GalNac virulent proteins of .

Front Parasitol

March 2024

Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional [CINVESTAV-Instituto Politécnico Nacional (IPN)], Mexico City, Mexico.

The retromer is a highly conserved eukaryotic complex formed by the cargo selective complex (CSC) and the sorting nexin (SNX) dimer subcomplexes. Its function is protein recycling and recovery from the endosomes to conduct the target molecules to the trans-Golgi network or the plasma membrane. The protozoan responsible for human amoebiasis, , exhibits an active membrane movement and voracious phagocytosis, events in which the retromer may be fully involved.

View Article and Find Full Text PDF

Cargo hitchhiking autophagy - a hybrid autophagy pathway utilized in yeast.

Autophagy

January 2025

Department of Cell and Molecular Biology, Virtua Health College of Medicine and Life Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ, USA.

Macroautophagy is a catabolic process that maintains cellular homeostasis by recycling intracellular material through the use of double-membrane vesicles called autophagosomes. In turn, autophagosomes fuse with vacuoles (in yeast and plants) or lysosomes (in metazoans), where resident hydrolases degrade the cargo. Given the conservation of autophagy, is a valuable model organism for deciphering molecular details that define macroautophagy pathways.

View Article and Find Full Text PDF

SNX3 mediates heart failure by interacting with HMGB1 and subsequently facilitating its nuclear-cytoplasmic translocation.

Acta Pharmacol Sin

January 2025

National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.

Sorting nexins (SNXs) as the key regulators of sorting cargo proteins are involved in diverse diseases. SNXs can form the specific reverse vesicle transport complex (SNXs-retromer) with vacuolar protein sortings (VPSs) to sort and modulate recovery and degradation of cargo proteins. Our previous study has shown that SNX3-retromer promotes both STAT3 activation and nuclear translocation in cardiomyocytes, suggesting that SNX3 might be a critical regulator in the heart.

View Article and Find Full Text PDF

Deciphering glioblastoma pathogenesis: Insights from mitophagy dysregulation and SNX7 as a therapeutic target.

Brain Res Bull

January 2025

Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou 350005, China; Department of Neurosurgery, Binhai Branch of National Regional Medical Center, The First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou 350005, China; Fujian Provincial Institutes of Brain Disorders and Brain Sciences, First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou 350005, China. Electronic address:

Background: Glioblastoma is a highly aggressive and invasive brain tumor with an extremely poor prognosis. The aims of the present study are to investigate the pathogenesis of glioblastoma and identify potential therapeutic targets.

Methods: We performed a systematic analysis of gene expression data from multiple datasets, including GEO and TCGA, to identify hub genes and pathways associated with glioblastoma progression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!