AI Article Synopsis

  • * Organism identification was confirmed using MALDI-TOF mass spectrometry, which indicated the isolates as Brucella species.
  • * Further analysis including phenotypic and genotypic characteristics confirmed the isolates as B. canis, and their mass spectral profiles were added to a reference library for easier future identification.

Article Abstract

Brucella canis was recovered from dogs that were canine brucellosis suspect by blood culture using a modified lysis method. Organism identity was established by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The instrument-provided security library identified the isolates as Brucella species. The isolates were further identified as B. canis with the help of phenotypic and genotypic characteristics. The mass spectral profiles from characterized B. canis isolates, when added to the MALDI-TOF MS standard reference library, allowed successful presumptive identification of B. canis.

Download full-text PDF

Source
http://dx.doi.org/10.1177/1040638717704652DOI Listing

Publication Analysis

Top Keywords

brucella canis
8
blood culture
8
matrix-assisted laser
8
laser desorption/ionization
8
desorption/ionization time-of-flight
8
time-of-flight mass
8
mass spectrometry
8
canis
5
detection brucella
4
canis infection
4

Similar Publications

Brucellosis in pregnancy: a case report.

AME Case Rep

November 2024

Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, University of Mississippi Medical Center, Jackson, MS, USA.

Background: spp., a gram-negative bacterium, is one of the most prevalent zoonotic illnesses worldwide and is more commonly seen in animals; however, the disease may be present in humans. Clinical manifestations of brucellosis are variable and can range from asymptomatic to severe disease.

View Article and Find Full Text PDF

Objective: To establish a rapid detection method for canine using recombinase-aided amplification (RAA) technology.

Methods: The outer membrane protein 25 gene fragment (Omp25) of canis was targeted. Primers and fluorescent probes were designed and synthesized, and recombinant plasmids were constructed as standards.

View Article and Find Full Text PDF

Assessing the diversity of zoonotic bacterial agents in rodents and small mammals in Iran.

Eur J Public Health

January 2025

National Reference Laboratory for Plague, Tularemia and Q Fever, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Akanlu, Kabudar-Ahang, Hamadan, Iran.

The purpose of this study was to assess the prevalence of zoonotic bacteria, including Coxiella burnetii, Bartonella spp., Rickettsia spp., Brucella spp.

View Article and Find Full Text PDF

Introduction: Brucellosis is still a significant emerging threat to public health, as it can infect humans, wild, domestic animals, and livestock. Hence, the current study aims to determine the frequency of canine brucellosis (CB), its relationship with clinical findings and reproductive disorders in kennel and farm dogs, and its importance on public health.

Materials And Methods: From January 2022 to December 2023, a total of 150 blood samples were taken from 100 adult dogs in breeding kennels and 50 shepherd dogs in breeding farms in Kerman, Iran.

View Article and Find Full Text PDF

Introduction: Shelters for stray dogs and cats deserve careful monitoring for zoonotic risk, as they represent a crucial point for prevention and control of infection spread. Data sorting to prioritize zoonotic agents in a geographic area need constant updating, but no regular official programs are ongoing, to allow an efficient risk survey for these animal species. This study aimed to conduct a comprehensive investigation of the prevalence of certain known, potential and emerging zoonoses within the framework of the routine monitoring of dog and cat shelters in North-East Italy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!