A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Head Impact Density: A Model To Explain the Elusive Concussion Threshold. | LitMetric

Concussion is a heterogeneous injury occurring throughout a range of impact magnitudes. Consequently, research focusing on a single or set of variables at the time of injury to understand concussive biomechanics has been thwarted by low injury prediction sensitivity. The current study examined the role of Impact Density in estimating concussive injury risk. Head impact data were collected across seven high school football seasons with the Head Impact Telemetry System (HIT System). Over the study period, 29 concussions were included for data analysis. The linear acceleration of the concussive impact was matched to a Control athlete, along with impacts in the 24 h before. Linear and rotational acceleration for the 19 impacts leading into the final event and the cumulative accelerations over time were evaluated. Analyses indicated no difference in impact counts within the final 24 h, or impact magnitudes for linear and rotational acceleration among the final 20 impacts (p > 0.05). A novel metric, Impact Density, was calculated from the final 20 impacts by summing the acceleration magnitude divided by time from the previous impact. Analyses indicated the Concussed athletes incurred a significantly higher linear (concussed: 255.4g/sec (standard error of the mean [SEM] = 40.1), controls:145.4g/sec (SEM = 23.8), p = 0.016), and rotational (Concussed:10311.3 rad/s/s/s (SEM = 1883.7), Controls: 6083.8 rad/s/s/s (SEM = 1115.9), p = 0.029) Impact Density than the Control athletes. Similar to other investigations, there was no difference in individual linear or rotational impact magnitude in the 20 impacts before and including the injury. The measure of Impact Density, however, revealed differences between the Concussed and Control athletes. These data suggest that the biomechanical threshold for concussion fluctuates downwardly with a greater impact magnitude and number with a return to pre-impact levels with time, suggesting physiological vulnerability to repeated head impacts. The current results highlight that time between impacts, not just impact magnitude, influences risk for concussion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5647505PMC
http://dx.doi.org/10.1089/neu.2016.4767DOI Listing

Publication Analysis

Top Keywords

impact density
20
impact
14
head impact
12
linear rotational
12
impact magnitude
12
threshold concussion
8
impact magnitudes
8
rotational acceleration
8
analyses indicated
8
final impacts
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!