In order to quantitatively determine the projected electron densities of a sample, one needs to extract the monochromatic fringe phase shifts from the polychromatic fringe phase shifts measured in the grating interferometry with incoherent X-ray sources. In this work the authors propose a novel analytic approach that allows to directly compute the monochromatic fringe shifts from the polychromatic fringe shifts. This approach is validated with numerical simulations of several grating interferometry setups. This work provides a useful tool in quantitative imaging for biomedical and material science applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5772425PMC
http://dx.doi.org/10.1364/OE.25.006053DOI Listing

Publication Analysis

Top Keywords

fringe phase
12
phase shifts
12
grating interferometry
12
monochromatic fringe
8
shifts polychromatic
8
polychromatic fringe
8
fringe shifts
8
fringe
5
shifts
5
polychromatic x-ray
4

Similar Publications

The detection of low-molecular-weight biomarkers is essential for diagnosing and managing various diseases, including neurodegenerative conditions such as Alzheimer's disease. A biomarker's low molecular weight is a challenge for label-free optical modalities, as the phase change they detect is directly proportional to the mass bound on the sensor's surface. To address this challenge, we used a resonant Young's slit interferometer geometry and implemented several innovations, such as phase noise matching and optimisation of the fringe spacing, to maximise the signal-to-noise ratio.

View Article and Find Full Text PDF

Miniaturized inertial sensor based on high-resolution dual atom interferometry.

Rev Sci Instrum

January 2025

State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China.

Atom interferometry shows high sensitivity for inertial measurements in the laboratory, but it faces difficulties in field applications because of a trade-off between sensitivity and size. Therefore, there is an urgent need to develop a small sensor with high resolution for measuring acceleration and rotation in inertial navigation applications. Presented here is a miniaturized inertial sensor capable of measuring acceleration and rotation simultaneously based on high-resolution dual atom interferometers.

View Article and Find Full Text PDF

Twisted halide perovskite bilayers, a type of moiré material, show square moiré patterns with exciting optical properties. Atomic-scale structure analysis and its correlation with properties are difficult to achieve due to the extreme sensitivity of organic-inorganic halide perovskites to the illuminated electron beam in conventional/scanning transmission electron microscopy. Here, we developed a low-dose exit wave reconstruction methodology with a real-space resolution of one angstrom at ∼50 e/Å, which recovers the phase information on the moiré fringes in CHNHPbI (MAPbI) twisted perovskite bilayers at atomic scale, enabling detailed structural analysis of defects and corresponding strain distribution in such moiré materials.

View Article and Find Full Text PDF

This Letter introduces a method for identifying the fast axis and phase retardation of wave plates by means of polarization common-path vortex interferometry. The technique utilizes a composite polarized vortex beam interacting with the wave plate under test. By analyzing the azimuth angle of the dark fringe in the interference pattern, the wave plate's characteristics are accurately extracted.

View Article and Find Full Text PDF

This paper presents an effective three-dimensional (3D) surface reconstruction technique aimed at profiling composite surfaces with both specular and diffuse reflectance. Three-dimensional measurements based on fringe projection techniques perform well on diffuse reflective surfaces; however, when the measurement targets contain both specular and diffuse components, the efficiency of fringe projection decreases. To address this issue, the proposed technique integrates digital holography into the fringe projection setup, enabling the simultaneous capture of both specular and diffuse reflected light in the same optical path for full-field surface profilometry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!