Pediatric acute myeloid leukemia (AML) is a heterogeneous disease with respect to biology as well as outcome. In this study, we investigated whether known biological subgroups of pediatric AML are reflected by a common microRNA (miRNA) expression pattern. We assayed 665 miRNAs on 165 pediatric AML samples. First, unsupervised clustering was performed to identify patient clusters with common miRNA expression profiles. Our analysis unraveled 14 clusters, seven of which had a known (cyto-)genetic denominator. Finally, a robust classifier was constructed to discriminate six molecular aberration groups: 11q23-rearrangements, t(8;21)(q22;q22), inv(16)(p13q22), t(15;17) (q21;q22), NPM1 and CEBPA mutations. The classifier achieved accuracies of 89%, 95%, 95%, 98%, 91% and 96%, respectively. Although lower sensitivities were obtained for the NPM1 and CEBPA (32% and 66%), relatively high sensitivities (84%-94%) were attained for the rest. Specificity was high in all groups (87%-100%). Due to a robust double-loop cross validation procedure employed, the classifier only employed 47 miRNAs to achieve the aforementioned accuracies. To validate the 47 miRNA signatures, we applied them to a publicly available adult AML dataset. Albeit partial overlap of the array platforms and molecular differences between pediatric and adult AML, the signatures performed reasonably well. This corroborates our claim that the identified miRNA signatures are not dominated by sample size bias in the pediatric AML dataset. In conclusion, cytogenetic subtypes of pediatric AML have distinct miRNA expression patterns. Reproducibility of the miRNA signatures in adult dataset suggests that the respective aberrations have a similar biology both in pediatric and adult AML.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5464851PMC
http://dx.doi.org/10.18632/oncotarget.16525DOI Listing

Publication Analysis

Top Keywords

mirna expression
16
pediatric aml
16
mirna signatures
12
adult aml
12
pediatric acute
8
acute myeloid
8
myeloid leukemia
8
expression profiles
8
aml
8
npm1 cebpa
8

Similar Publications

Diabetes nephropathy (DN) is a prevalent and severe microvascular diabetic complication. Despite the recent developments in germacrone-based therapies for DN, the underlying mechanisms of germacrone in DN remain poorly understood. This study used comprehensive bioinformatics analysis to identify critical microRNAs (miRNAs) and the potential underlying pathways related to germacrone activities.

View Article and Find Full Text PDF

Methamphetamine use disorder has emerged as a significant public health concern globally. This study endeavors to elucidate the alterations in expression changes of miRNAs in the plasma of methamphetamine use disorder and elucidate the alterations in miRNA expression in the plasma of individuals with methamphetamine use disorder and investigate the relationship between these differentially expressed miRNAs and the disorder itself, cravings for methamphetamine, and associated mental disorders. Furthermore, the study seeks to clarify the expression of downstream target molecules of specific miRNAs in the plasma of methamphetamine use disorder, assess the diagnostic utility of these miRNAs and their target molecules, explore their potential as biomarkers, and identify potential targets for the diagnosis and treatment of methamphetamine use disorder.

View Article and Find Full Text PDF

The cis-regulatory elements encoded in an mRNA determine its stability and translational output. While there has been a considerable effort to understand the factors driving mRNA stability, the regulatory frameworks governing translational control remain more elusive. We have developed a novel massively parallel reporter assay (MPRA) to measure mRNA translation, named Nascent Peptide Translating Ribosome Affinity Purification (NaP-TRAP).

View Article and Find Full Text PDF

Modern maize (Zea mays ssp. mays) was domesticated from Teosinte parviglumis (Zea mays ssp. parviglumis), with subsequent introgressions from Teosinte mexicana (Zea mays ssp.

View Article and Find Full Text PDF

microRNAs (miRNAs) are central post-transcriptional gene expression regulators in healthy and diseased states. Despite decades of effort, deciphering miRNA targets remains challenging, leading to an incomplete miRNA interactome and partially elucidated miRNA functions. Here, we introduce microT-CNN, an avant-garde deep convolutional neural network model that moves the needle by integrating hundreds of tissue-matched (in-)direct experiments from 26 distinct cell types, corresponding to a unique training and evaluation set of >60 000 miRNA binding events and ~30 000 unique miRNA-gene target pairs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!