Gold nanoparticles were synthesized using Ananas comosus as reducing agent. UV-visible spectra show the surface plasmon resonance peak at 544 nm. TEM measurement shows that the formation of monodispersed spherical nanoparticles with average size of 7 nm. Crystalline nature of the nanoparticles was evident from TEM images and peaks in the XRD pattern. FTIR analysis provides the presence of biomolecules responsible for the reduction and capping of the prepared gold nanoparticles. A selective and sensitive method is proposed for detecting mercury based on the SPR change of gold nanoparticles. This mercury sensor based on surface plasmon optical sensor can be used in water analysis.

Download full-text PDF

Source
http://dx.doi.org/10.17344/acsi.2016.3054DOI Listing

Publication Analysis

Top Keywords

gold nanoparticles
16
surface plasmon
8
nanoparticles
6
monodispersed gold
4
nanoparticles probe
4
probe detection
4
detection hg2+
4
hg2+ ions
4
ions water
4
water gold
4

Similar Publications

Plasmonic materials can be utilized as effective platforms to enhance luminescent signals of luminescent metal nanoclusters (LMNCs). Both surface enhanced fluorescence (SEF) and shell-isolated nanoparticle-enhanced fluorescence (SHINEF) strategies take advantage of the localized and increased external electric field created around the plasmonic metal surface when excited at or near their characteristic plasmonic resonance. In this context, we present an experimental and computational study of different plasmonic composites, (Ag) Ag@SiO2 and (Au) Au@SiO2 nanoparticles, which were used to enhance the luminescent signal of Au nanoclusters coated with glutathione (GSH) molecule (Au25GSH NCs).

View Article and Find Full Text PDF

Here we describe the synthesis and evaluation of a molecular corrosion sensor that can be applied in situ in aerospace coatings, then used to detect corrosion after the coating has been applied. A pH-sensitive molecule, 4-mercaptopyridin (4-MP), is attached to a gold nanoparticle to allow surface-enhanced Raman-scattering (SERS) for signal amplification. These SERS nanoparticles, when combined with an appropriate micron-sized carrier system, are incorporated directly into an MIL-SPEC coating and used to monitor the process onset and progression of corrosion using pH changes occurring at the metal-coating interface.

View Article and Find Full Text PDF

Gold-Mercury-Platinum Alloy for Light-Enhanced Electrochemical Detection of Hydrogen Peroxide.

Sensors (Basel)

December 2024

Center for Experimental Chemistry Education of Shandong University, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.

In this study, a simple and easy synthesis strategy to realize the modification of AuHgPt nanoalloy materials on the surface of ITO glass at room temperature is presented. Gold nanoparticles as templates were obtained by electrochemical deposition, mercury was introduced as an intermediate to form an amalgam, and then a galvanic replacement reaction was utilized to successfully prepare gold-mercury-platinum (AuHgPt) nanoalloys. The obtained alloys were characterized by scanning electron microscopy, UV-Vis spectroscopy, X-ray photoelectron spectroscopy and X-ray diffraction techniques.

View Article and Find Full Text PDF

Development of a Novel Electrochemical Immunosensor for Rapid and Sensitive Detection of Sesame Allergens Ses i 4 and Ses i 5.

Foods

January 2025

School of Food and Biological Engineering, Engineering Research Center of Bio-Process of Ministry of Education, Anhui Province Laboratory of Agricultural Products Modern Processing, Hefei University of Technology, Hefei 230009, China.

Due to their lipophilicity and low content, the major sesame oleosin allergens, Ses i 4 and Ses i 5, are challenging to identify using conventional techniques. Then, a novel unlabeled electrochemical immunosensor was developed to detect the potential allergic activity of sesame oleosins. The voltammetric immunosensor was constructed using a composite of gold nanoparticles (AuNPs), polyethyleneimine (PEI), and multi-walled carbon nanotubes (MWCNTs), which was synthesized in a one-pot process and modified onto a glass carbon electrode to enhance the catalytic current of the oxygen reduction reaction.

View Article and Find Full Text PDF

A highly sensitive lateral flow immunoassay (LFIA) for imidacloprid, a widely used neonicotinoid insecticide, has been developed. The LFIA realizes the indirect coupling of anti-imidacloprid antibodies and gold nanoparticle (GNP) labels directly in the course of the assay. For this purpose, the common GNPs conjugate with anti-imidacloprid antibodies and are changed into a combination of non-modified, anti-imidacloprid antibodies, and the GNPs conjugate with anti-species antibodies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!