The apnea hypopnea index (AHI) reported by positive airway pressure (PAP) device is widely used in clinical practice, yet its correlation with standardized AHI obtained during the sleep study is not established. The current study was conducted to investigate the correlation between AHI estimated by the PAP device and reported on the smart card with the AHI found during the PAP polysomnography (PSG) in the "real world" setting at an academic sleep center. We retrospectively reviewed the medical records of 280 patients who underwent a PAP titration PSG at Drexel sleep center, and were later prescribed a PAP device. The AHI was categorized in clinically relevant subgroups (as AHI ≤5 and AHI >5). The AHI at the final pressure on the PSG and the average AHI from the prescribed PAP device were compared. The results showed that in the majority (77.3%) of patients (126 of 163), the AHI from both PAP device and PSG correlated well and were in the same category (AHI ≤5 and AHI >5 respectively). The majority of patients (80.7%) with PSG AHI of <5 had PAP device AHI <5 as well. By contrast, if PSG AHI was >5, 61.5% patients reported good control, with AHI <5 on PAP device AHI. We conclude that in a majority of patients who were optimally titrated in the sleep laboratory, the PAP device continued to show optimal control at home.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5381855 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0174458 | PLOS |
Anal Chem
January 2025
Yunnan Key Laboratory of Modern Separation Analysis and Substance Transformation, College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, Yunnan Province, P. R. China.
Early and portable detection of pathogenic bacteria is crucial for ensuring food safety, monitoring product quality, and tracing the sources of bacterial infections. Moving beyond traditional plate-culture counting methods, the analysis of active bacterial components offers a rapid means of quantifying bacteria. Here, metal-organic framework (MOF)-derived NiCo-layered double hydroxide nanosheets (LDHs), synthesized via the Kirkendall effect, were employed as highly effective oxidase mimics to generate reactive oxygen species (ROS).
View Article and Find Full Text PDFMicrosurgery
January 2025
Service de Chirurgie Plastique et Reconstructrice, Hôpital européen Georges-Pompidou, Paris, France.
Objective: The optimal method for maintaining intraoperative blood pressure during microsurgical procedures remains controversial. While intravenous fluid administration is essential, overfilling can lead to complications. Vasopressor agents are used cautiously due to their vasoconstrictive effects, which could potentially lead to flap failure.
View Article and Find Full Text PDFJ Cardiovasc Dev Dis
January 2025
Department of Cardiology, University Hospital Galway, Saolta University Healthcare Group, Newcastle Road, H91YR71 Galway, Ireland.
Hospitalisation for acute decompensated heart failure (HF) portends a poor prognosis. Fluid retention manifesting in dyspnoea and oedema are important clinical features of decompensated heart failure and drive hospital admissions. Intracardiac and pulmonary artery pressure (PAP) monitoring can help predict heart failure decompensation, as changes in these haemodynamics occur before clinical congestion manifests.
View Article and Find Full Text PDFClin Transplant
January 2025
Division of Cardiac Surgery, Department of Surgery, Faculty of Medicine, University of Alberta, Edmonton, Canada.
Introduction: Preclinically, 24-hour continuous Ex-Situ Lung Perfusion (ESLP) is the longest duration achieved in large animal models and rejected human lungs. Here, we present our 36-hour Negative Pressure Ventilation (NPV)-ESLP protocol applied to porcine and rejected human lungs.
Methods: Five sets of donor domestic pig lungs (45-55 kg) underwent 36-hour NPV-ESLP.
BMJ Open
December 2024
Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
Introduction: Obstructive sleep apnoea (OSA) is characterised by blood oxygen desaturations and sleep disruptions manifesting undesirable consequences. Existing treatments including oral appliances, positive airway pressure (PAP) therapy and surgically altering the anatomy of the pharynx have drawbacks including poor long-term adherence or often involving irreversible, invasive procedures. Bilateral hypoglossal nerve stimulation (HNS) is a new treatment for managing OSA, and this study is intended to determine whether an HNS system is a safe and effective treatment option for adults with OSA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!