Measuring the mass, volume, and density of microgram-sized objects in fluid.

PLoS One

Department of Bioengineering, University of California, Riverside, Riverside, CA, United States of America, 92521.

Published: August 2017

AI Article Synopsis

Article Abstract

Measurements of an object's fundamental physical properties like mass, volume, and density can offer valuable insights into the composition and state of the object. However, many important biological samples reside in a liquid environment where it is difficult to accurately measure their physical properties. We show that by using a simple piece of glass tubing and some inexpensive off-the-shelf electronics, we can create a sensor that can measure the mass, volume, and density of microgram-sized biological samples in their native liquid environment. As a proof-of-concept, we use this sensor to measure mass changes in zebrafish embryos reacting to toxicant exposure, density changes in seeds undergoing rehydration and germination, and degradation rates of biomaterials used in medical implants. Since all objects have these physical properties, this sensor has immediate applications in a wide variety of different fields including developmental biology, toxicology, materials science, plant science, and many others.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5381818PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0174068PLOS

Publication Analysis

Top Keywords

mass volume
12
volume density
12
physical properties
12
density microgram-sized
8
biological samples
8
liquid environment
8
sensor measure
8
measure mass
8
measuring mass
4
density
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!