The Combined Influence of Hydrogel Stiffness and Matrix-Bound Hyaluronic Acid Content on Glioblastoma Invasion.

Macromol Biosci

Department of Chemical and Biomolecular Engineering, and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 600 S. Mathews St., Urbana, IL, 61801, USA.

Published: August 2017

Glioblastoma (GBM) is the most common and lethal form of brain cancer. Its high mortality is associated with its aggressive invasion throughout the brain. The heterogeneity of stiffness and hyaluronic acid (HA) content within the brain makes it difficult to study invasion in vivo. A dextran-bead assay is employed to quantify GBM invasion within HA-functionalized gelatin hydrogels. Using a library of stiffness-matched hydrogels with variable levels of matrix-bound HA, it is reported that U251 GBM invasion is enhanced in softer hydrogels but reduced in the presence of matrix-bound HA. Inhibiting HA-CD44 interactions reduces invasion, even in hydrogels lacking matrix-bound HA. Analysis of HA biosynthesis suggests that GBM cells compensate for a lack of matrix-bound HA by producing soluble HA to stimulate invasion. Together, a robust method is showed to quantify GBM invasion over long culture times to reveal the coordinated effect of matrix stiffness, immobilized HA, and compensatory HA production on GBM invasion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5555785PMC
http://dx.doi.org/10.1002/mabi.201700018DOI Listing

Publication Analysis

Top Keywords

gbm invasion
16
invasion
9
hyaluronic acid
8
acid content
8
quantify gbm
8
gbm
6
matrix-bound
5
combined influence
4
influence hydrogel
4
hydrogel stiffness
4

Similar Publications

Background: Although invasiveness is one of the major determinants of the poor glioblastoma (GBM) outcome, the mechanisms of GBM invasion are only partially understood. Among the intrinsic and environmental processes promoting cell-to-cell interaction processes, eventually driving GBM invasion, we focused on the pro-invasive role played by Extracellular Vesicles (EVs), a heterogeneous group of cell-released membranous structures containing various bioactive cargoes, which can be transferred from donor to recipient cells.

Methods: EVs isolated from patient-derived GBM cell lines and surgical aspirates were assessed for their pro-migratory competence by spheroid migration assays, calcium imaging, and PYK-2/FAK phosphorylation.

View Article and Find Full Text PDF

Advancing cancer therapy with custom-built alternating electric field devices.

Bioelectron Med

January 2025

School of Pharmacy, Biodiscovery Institute & Boots Science Building, University of Nottingham, Nottingham, NG7 2RD, UK.

Background: In glioblastoma (GBM) therapy research, tumour treating fields by the company Novocure™, have shown promise for increasing patient overall survival. When used with the chemotherapeutic agent temozolomide, they extend median survival by five months. However, there is a space to design alternative systems that will be amenable for wider use in current research.

View Article and Find Full Text PDF

Molecular Mechanisms and Strategies for Inducing Neuronal Differentiation in Glioblastoma Cells.

Cell Reprogram

January 2025

Department of Pharmacy, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China.

Glioblastoma multiforme (GBM) is a highly invasive brain tumor, and traditional treatments combining surgery with radiochemotherapy have limited effects, with tumor recurrence being almost inevitable. Given the lack of proliferative capacity in neurons, inducing terminal differentiation of GBM cells or glioma stem cells (GSCs) into neuron-like cells has emerged as a promising strategy. This approach aims to suppress their proliferation and self-renewal capabilities through differentiation.

View Article and Find Full Text PDF

Glioblastoma(GBM) is a highly malignant primary central nervous system tumor that poses a significant threat to patient survival due to its treatment resistance and rapid recurrence.Current treatment options, including maximal safe surgical resection, radiotherapy, and temozolomide (TMZ) chemotherapy, have limited efficacy.In recent years, the role of glycolytic metabolic reprogramming in GBM has garnered increasing attention.

View Article and Find Full Text PDF

Introduction: The Wnt/planar cell polarity (PCP) signaling pathway is pivotal in regulating various biological processes such as early embryonic development, neural crest cell migration, and cancer invasion. Despite advances in understanding the role of Wnt/PCP pathway dysregulation in tumorigenesis, numerous unanswered questions remain. Our study focused on VANGL2, a core PCP gene, to elucidate its potential mechanistic involvement in cancer development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!