A guide to the effects of a large portion of the residues of triosephosphate isomerase on catalysis, stability, druggability, and human disease.

Proteins

Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, 04510, México.

Published: July 2017

Triosephosphate isomerase (TIM) is a ubiquitous enzyme, which appeared early in evolution. TIM is responsible for obtaining net ATP from glycolysis and producing an extra pyruvate molecule for each glucose molecule, under aerobic and anaerobic conditions. It is placed in a metabolic crossroad that allows a quick balance of the triose phosphate aldolase produced by glycolysis, and is also linked to lipid metabolism through the alternation of glycerol-3-phosphate and the pentose cycle. TIM is one of the most studied enzymes with more than 199 structures deposited in the PDB. The interest for this enzyme stems from the fact that it is involved in glycolysis, but also in aging, human diseases and metabolism. TIM has been a target in the search for chemical compounds against infectious diseases and is a model to study catalytic features. Until February 2017, 62% of all residues of the protein have been studied by mutagenesis and/or using other approaches. Here, we present a detailed and comprehensive recompilation of the reported effects on TIM catalysis, stability, druggability and human disease produced by each of the amino acids studied, contributing to a better understanding of the properties of this fundamental protein. The information reviewed here shows that the role of the noncatalytic residues depend on their molecular context, the delicate balance between the short and long-range interactions in concerted action determining the properties of the protein. Each protein should be regarded as a unique entity that has evolved to be functional in the organism to which it belongs. Proteins 2017; 85:1190-1211. © 2017 Wiley Periodicals, Inc.

Download full-text PDF

Source
http://dx.doi.org/10.1002/prot.25299DOI Listing

Publication Analysis

Top Keywords

triosephosphate isomerase
8
catalysis stability
8
stability druggability
8
druggability human
8
human disease
8
tim
5
guide effects
4
effects large
4
large portion
4
portion residues
4

Similar Publications

Occurrence and Multi-Locus Genotyping of in Black Goats from Fujian Province, China.

Animals (Basel)

January 2025

Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.

is a zoonotic parasite that causes gastrointestinal diseases in both humans and animals. To evaluate the prevalence and genetic diversity of in black goats, we collected 539 fecal samples from nine districts in Fujian Province, China. The presence of was confirmed through nested PCR targeting the SSU rRNA gene, and genotyping was performed at the beta-giardin, glutamate dehydrogenase, and triosephosphate isomerase loci.

View Article and Find Full Text PDF

Quantitative Proteomics Identifies Profilin-1 as a Pseudouridine-Binding Protein.

J Am Chem Soc

January 2025

Department of Chemistry, University of California, Riverside, California 92521-0403, United States.

Pseudouridine (Ψ) is the most abundant RNA modification in nature; however, not much is known about the biological functions of this modified nucleoside. Employing an unbiased quantitative proteomics method, we identified multiple candidate reader proteins of Ψ in RNA, including a cytoskeletal protein profilin-1 (PFN1). We demonstrated that PFN1 binds directly and selectively to Ψ-containing RNA.

View Article and Find Full Text PDF

We report the first implementation of ion mobility mass spectrometry combined with an ultra-high throughput sample introduction technology for high throughput screening (HTS). The system integrates differential ion mobility (DMS) with acoustic ejection mass spectrometry (AEMS), termed DAEMS, enabling the simultaneous quantitation of structural isomers that are the sub-strates and products of isomerase mediated reactions in intermediary metabolism. We demonstrate this potential by comparing DAEMS to a luminescence assay for the isoform of phosphoglycerate mutase (iPGM) distinctively present in pathogens offering an opportunity as a drug target for a variety of microbial and parasite borne diseases.

View Article and Find Full Text PDF

Epithelial-to-mesenchymal transition (EMT) is a conserved cellular process critical for embryogenesis, wound healing, and cancer metastasis. During EMT, cells undergo large-scale metabolic reprogramming that supports multiple functional phenotypes including migration, invasion, survival, chemo-resistance and stemness. However, the extent of metabolic network rewiring during EMT is unclear.

View Article and Find Full Text PDF

Interplay between tobacco curly shoot virus vsiRNA24 and triosephosphate isomerase: implications for Nicotiana benthamiana viral defense.

New Phytol

December 2024

Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, 400715, China.

Virus-derived small interfering RNAs (vsiRNAs) play an important role in viral infection by regulating the expression of host genes. At present, research on the regulation of plant primary metabolic pathways by vsiRNAs is very limited. TvsiRNA24 derived from tobacco curly shoot virus (TbCSV) was amplified by reverse transcription polymerase chain reaction, and its target gene NbTPI (triosephosphate isomerase) was verified using reverse transcription quantitative polymerase chain reaction and GFP fluorescence observation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!