A "Click Chemistry Platform" for the Rapid Synthesis of Bispecific Molecules for Inducing Protein Degradation.

J Med Chem

Department of Therapeutic Discovery-Discovery Technologies, Amgen Inc. , 1120 Veterans Boulevard, South San Francisco, California 94080, United States.

Published: January 2018

AI Article Synopsis

  • PROTACs are specialized molecules that help target specific proteins for degradation by connecting a protein binder to an ubiquitin ligase binder.
  • The effectiveness of PROTACs relies on various factors like the choice of ligands, where they link, and how the linker is made, which have been challenging to optimize.
  • The text introduces a "click chemistry" method for creating PROTACs, showcasing its effectiveness using a specific BRD4 ligand and ligase binders while employing assays to evaluate their ability to degrade target proteins.

Article Abstract

Proteolysis targeting chimeras (PROTACs) are bispecific molecules containing a target protein binder and an ubiquitin ligase binder connected by a linker. By recruiting an ubiquitin ligase to a target protein, PROTACs promote ubiquitination and proteasomal degradation of the target protein. The generation of effective PROTACs depends on the nature of the protein/ligase ligand pair, linkage site, linker length, and linker composition, all of which have been difficult to address in a systematic way. Herein, we describe a "click chemistry" approach for the synthesis of PROTACs. We demonstrate the utility of this approach with the bromodomain and extraterminal domain-4 (BRD4) ligand JQ-1 (3) and ligase binders targeting cereblon (CRBN) and Von Hippel-Lindau (VHL) proteins. An AlphaScreen proximity assay was used to determine the ability of PROTACs to form the ternary ligase-PROTAC-target protein complex and a MSD assay to measure cellular degradation of the target protein promoted by PROTACs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jmedchem.6b01781DOI Listing

Publication Analysis

Top Keywords

target protein
16
bispecific molecules
8
ubiquitin ligase
8
degradation target
8
protein
6
protacs
6
"click chemistry
4
chemistry platform"
4
platform" rapid
4
rapid synthesis
4

Similar Publications

Background: There is still a significant proportion of patients with rheumatoid arthritis (RA) in whom multiple therapeutic lines are ineffective. These cases are defined by the EULAR criteria as Difficult-to-Treat RA (D2T-RA) for which there is limited knowledge of predisposing factors.

Objective: To identify the clinical features associated with D2T-RA in real-life practice.

View Article and Find Full Text PDF

Wu-Mei-Wan enhances brown adipose tissue function and white adipose browning in obese mice via upregulation of HSF1.

Chin Med

January 2025

Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.

Background: This research aims to explore the anti-obesity potential of Wu-Mei-Wan (WMW), particularly its effects on adipose tissue regulation in obese mice induced by a high-fat diet (HFD). The study focuses on understanding the role of heat shock factor 1 (HSF1) in mediating these effects.

Methods: HFD-induced obese mice were treated with WMW.

View Article and Find Full Text PDF

Objective: This study aims to explore the potential role of mesenchymal stem cells (MSCs) in the treatment of osteoarthritis (OA), particularly the function of the NOTCH1 signaling pathway in maintaining the stemness of MSCs and in chondrocyte differentiation.

Methods: Utilizing diverse analytical techniques on an osteoarthritis dataset, we unveil distinct gene expression patterns and regulatory relationships, shedding light on potential mechanisms underlying the disease. Techniques used include the culture of MSCs, induction of differentiation into chondrocytes, establishment of stable cell lines, Western Blot, and immunofluorescence.

View Article and Find Full Text PDF

Background: Interactions between RNA-binding proteins and RNA regulate RNA transcription during osteoporosis. Ferroptosis, a programmed cell death caused by iron metabolism, plays a vital role in osteoporosis. However, the mechanisms by which RNA-binding proteins are involved in ferroptosis during osteoporosis remain unclear.

View Article and Find Full Text PDF

Isolation and characterization of ɸEcM-vB1 bacteriophage targeting multidrug-resistant Escherichia coli.

BMC Res Notes

January 2025

Department of Microbiology and Immunology, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt.

Objectives: The aim of this study is to screen for, isolate and characterize a bacteriophage designated ɸEcM-vB1 with confirmed lytic activity against multidrug-resistant (MDR) E. coli. Methods done in this research are bacteriophage isolation, purification, titer determination, bacteriophage morphology, host range determination, bacteriophage latent period and burst size determination, genomic analysis by restriction enzymes, and bacteriophage total protein content determination.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!