In this work, we designed a series of superalkali-doped Si C nanocage M O@Si C (M = Li, Na, K) with donor-acceptor framework. Density functional theory calculations demonstrated that the HOMO-LUMO gap of the complexes conspicuously narrowed with increase of atomic number of the alkali metal, the value decreased from 5.452 eV of pure Si C nanocage to 3.750, 2.984, and 2.634 eV of Li O@Si C , Na O@Si C , and K O@Si C , respectively. This finding shows that the pristine Si C cluster could be transformed to n-type semiconductor by introduction of the superalkali M O. We also showed that the superalkali doping remarkably enhanced the first hyperpolarizability of Si C . Among the studied systems, K O@Si C not only has the narrowest gap but also has the strongest nonlinear optical (NLO) properties, its first hyperpolarizability reached as high as 21695 a.u. The striking results presented in this work will be beneficial for potential applications of the Si C -based nanostructure in the electronic nanodevices and high-performance NLO materials. © 2017 Wiley Periodicals, Inc.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcc.24796 | DOI Listing |
Adv Mater
January 2025
Institute of Modern Optics & Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, Nankai University, Tianjin, 300350, P. R. China.
Memristors enable non-volatile memory and neuromorphic computing. Optical memristors are the fundamental element for programmable photonic integrated circuits due to their high-bandwidth computing, low crosstalk, and minimal power consumption. Here, an optical memristor enabled by a non-volatile electro-optic (EO) effect, where refractive index modulation under zero field is realized by deliberate control of domain alignment in the ferroelectric material Pb(MgNb)O-PbTiO(PMN-PT) is proposed.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
The present investigation seeks to customize the optical, magnetic, and structural characteristics of nickel oxide (NiO) nanopowders through chromium, iron, cobalt, copper, and zinc doping to enhance optoelectronic applications. In this regard, the preparation of pristine NiO and Ni × O (X = Cr, Fe, Co, Cu, and Zn) powders was successfully achieved through the co-precipitation method. The X-ray powder diffraction was employed to examine the prepared powders' phase formation and crystal structure characteristics.
View Article and Find Full Text PDFSci Adv
January 2025
New Cornerstone Science Laboratory, State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China.
Small organic molecules are essential building blocks of our universe, from cosmic dust to planetary surfaces to life. Compared to their well-known gaseous and liquid forms that have been extensively studied, small organic molecules in the form of ice at low temperatures receive much less attention. Here, we show that supercooled small-molecule droplets can be drawn into highly uniform amorphous ice microfibers with lengths up to 5 cm and diameters down to 200 nm.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea.
Two-dimensional (2D) organic-inorganic hybrid metal halides (OIMHs), characterized by noncentrosymmetric structures arising from the incorporation of chiral organic molecules that break inversion symmetry, have attracted significant attention. Particularly, chiral-polar 2D OIMHs offer a unique platform for multifunctional applications, as the coexistence of chirality and polarity enables the simultaneous manifestation of distinct properties such as nonlinear optical (NLO) effects, circular dichroism (CD), and ferroelectricity. In this study, we report the first synthesis of hafnium (Hf)-based chiral 2D OIMHs, achieved through the strategic incorporation of -substituents on the benzene ring of chiral organic components.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecular Materials Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin 300350, P. R. China.
Flexible molecular crystals are essential for advancing smart materials, providing unique functionality and adaptability for applications in next-generation electronics, pharmaceuticals, and energy storage. However, the optical applications of flexible molecular crystals have been largely restricted to linear optics, with nonlinear optical (NLO) properties rarely explored. Herein, we report on the application of mechanical twisting of flexible molecular crystals for second-order nonlinear optics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!