In humans, vertical posture acquisition caused several changes in bones and muscles which can be assumed as verticalization. Pelvis, femur, and vertebral column gain an extension position which decreases muscular work by paravertebral muscles in the latter. It's widely known that six different morphological categories exist; each category differs from the others by pelvic parameters and vertebral column curvatures. Both values depend on the Pelvic Incidence, calculated as the angle between the axes passing through the rotation centre of the two femur heads and the vertical axis passing through the superior plate of the sacrum. The aim of this study is to evaluate the distribution of stress and the resulting strain along the axial skeleton using finite element analysis. The use of this computational method allows performing different analyses investigating how different bony geometries and skeletal structures can behavior under specific loading conditions. A computerized tomography (CT) of artificial bones, carried on at 1.5 mm of distance along sagittal, coronal and axial planes with the knee at 0° flexion (accuracy 0.5 mm), was used to obtain geometrical data of the model developed. Lines were imported into a commercial code (Hypermesh by Altair) in order to interpolate main surfaces and create the solid version of the model. In particular six different models were created according Roussoly's classification, by arranging geometrical position of the skeletal components. Loading conditions were obtained by applying muscular forces components to T1 till to L5, according to a reference model (Daniel M. 2011), and a fixed constrain was imposed on the lower part of the femurs. Materials were assumed as elastic with an Elastic modulus of 15 GPa, a Shear Modulus of 7 GPa for bony parts, and an Elastic modulus of 6 MPa, a Shear Modulus of 3 MPa for cartilaginous parts. Six different simulations have been carried out in order to evaluate the mechanical behavior of the human vertebral column arranged according to the Russoly's classification; results confirm higher solicitations obtained varying configurations from case I to case VI. In particular way, first three cases seem to supply the different loading configurations spreading stresses in almost all the bony parts of the column, while the remaining others three cases produce an higher concentration of stress around the lower part of spine (L3, L4, L5). Results confirm a good agreement with those present in literature (Winkle et al., 1999), an equivalent Von Mises average stress was of 0,55 MPa was found on the intervertebral disks with the higher values reached on the lower part of the column. A comparison of results obtained for Case I with literature (Galbusera et al., and El Rich et al., 2004), shows a good agreement in terms of normal compressive force, while more evident differences with Galbusera's results can be found for shear force and sagittal moment. The results underline a relationship between PI increase, and accordingly of PT and LL, and the distribution of load forces. Load forcesi is exerted mainly on distal vertebrae, especially on L4 and L5.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5369862PMC
http://dx.doi.org/10.1016/j.jor.2017.03.007DOI Listing

Publication Analysis

Top Keywords

vertebral column
12
finite element
8
element analysis
8
loading conditions
8
elastic modulus
8
shear modulus
8
bony parts
8
three cases
8
good agreement
8
column
5

Similar Publications

Where does the tether break in vertebral body tethering cases? Clinical insights from revision cases after tether breakage.

Spine Deform

January 2025

Department of Spine Surgery, Eifelklinik St Brigida, St. Brigida Eifelklinik, Kammerbruchst. 8, 52152, Simmerath, Germany.

Purpose: To evaluate the sites where the tether breaks in vertebral body tethering (VBT) cases.

Methods: Intraoperative evaluation of broken tethers in patients who had anterior revision.

Inclusion Criteria: anterior revision of VBT cases with explantation of the full implant and photo documentation.

View Article and Find Full Text PDF

Introduction: Kidney transplantation is the preferred treatment for end-stage kidney disease (ESKD), enhancing survival and quality of life. However, kidney transplant recipients (KTRs) are at high risk for bone disorders, particularly low bone turnover disease, which increases fracture risk. Teriparatide, an anabolic agent, may provide a beneficial treatment option for these patients.

View Article and Find Full Text PDF

Objective: To investigate the prospective associations between age and the risk of low back disorders (LBD), dorsal disorders (DD), and cervical disorders (CD), and to identify a potential age-threshold for increased risk of back disorders.

Methods: Prospective cohort from the UK Biobank comprising adults with no history of back disorders. We examined different ages and their association with the risk of back disorders derived from diagnoses of hospital registers.

View Article and Find Full Text PDF

Objective: To explore the efficacy and safety of the direct inferior endplate approach in percutaneous endoscopic interlaminar discectomy (PEID) for the treatment of L5-S1 disc herniation.

Methods: This was a retrospective analysis of 116 patients with L5-S1 disc herniation treated with PEID; 74 patients underwent surgery via the direct inferior endplate approach (group A), and 42 patients underwent surgery via the indirect approach (group B). The number of intraoperative fluoroscopy exposures, establishment channel time, operation time, postoperative visual analogue scale (VAS) score, and Oswestry Disability Index (ODI) were compared between the 2 groups.

View Article and Find Full Text PDF

ASIC1a mediated nucleus pulposus cells pyroptosis and glycolytic crosstalk as a molecular basis for intervertebral disc degeneration.

Inflamm Res

January 2025

Department of Orthopedics and Traumatology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China.

Background: One of the etiologic components of degenerative spinal illnesses is intervertebral disc degeneration (IVDD), and the accompanying lower back pain is progressively turning into a significant public health problem. Important pathologic characteristics of IVDD include inflammation and acidic microenvironment, albeit it is unclear how these factors contribute to the disease.

Purpose: To clarify the functions of inflammation and the acidic environment in IVDD, identify the critical connections facilitating glycolytic crosstalk and nucleus pulposus cells (NPCs) pyroptosis, and offer novel approaches to IVDD prevention and therapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!