AI Article Synopsis

  • Bovine herpesvirus 1 (BoHV-1) is linked to reproductive failures in cattle, particularly affecting the ovary and the corpus luteum (CL), with vaccination prior to breeding being an effective mitigation strategy.
  • Prior research showed that BoHV-1 primarily targets the CL, leading to lesions shortly after estrus, and that various vaccine strains can yield different ovarian responses and progesterone levels.
  • Subsequent safety studies for vaccinating pregnant cows did not definitively confirm fetal safety, and afterward, a rise in reproductive losses associated with BoHV-1 was noted, prompting the need for improved vaccine approaches.

Article Abstract

Bovine herpesvirus 1 (BoHV-1) has long been associated with reproductive failure in cattle following infection of the ovary and/or fetus. Vaccination prior to breeding has been an effective approach to lessen the impact of BoHV-1 on reproduction. Prior studies in the 1980s and 1990s established the susceptibility of the ovary and particularly the corpus luteum (CL) to BoHV-1 infection. A series of studies at breeding time established that: (1) in naïve animals, the CL was the major target of BoHV-1 pathology; (2) CL lesions occurred within 4-9 days after estrus; (3) similar lesions was seen with BoHV-1 MLV vaccines; (4) ovarian lesions varied by the vaccine strain used; (5) progesterone decreased with or without CL lesions; and (6) following reactivation of BoHV-1 latent infection, ovaries could become reinfected in the face of BoHV-1 immunity. Large scale field studies demonstrated that conception was highest in animals previously vaccinated and boostered with inactivated vaccine compared to animals revaccinated with MLV. In the early 2000s, to get a label claim to vaccinate calves nursing pregnant cows, safety study outlines were approved by USDA-APHIS CVB. These studies were designed to determine the effect of revaccination with MLV during pregnancy on previously vaccinated cows and were not rigorous enough to confirm complete fetal safety. As designed these studies showed no difference in reproductive loss between the previously vaccinated animals and the animals revaccinated ∼4, 7 and 9 months later, leading to the label approval for MLV vaccination in pregnant cows. Subsequent investigations by diagnostic laboratories found an increase in BoHV-1 reproductive loss after the approval for use in pregnant animals. A method was developed to differentiate IBR vaccine strains from field strains. Analysis of viruses from 31 cases from 2009-2016 indicated that all 31 isolates matched with vaccine strains. Going forward, it will be necessary to develop vaccine approaches that use non-abortifacient, nonlatent BoHV-1 vaccines that develop lifelong immunity, protecting the animal while doing no harm to the fetus.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vetmic.2017.03.016DOI Listing

Publication Analysis

Top Keywords

bohv-1
9
bovine herpesvirus
8
animals revaccinated
8
pregnant cows
8
reproductive loss
8
vaccine strains
8
animals
6
studies
5
vaccine
5
herpesvirus modified
4

Similar Publications

Enhanced immunogenicity of a BoHV-1 gG-/tk- vaccine.

Vaccine

January 2025

National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China; Key Laboratory of development of veterinary diagnostic products, Ministry of Agriculture and Rural Affair, Wuhan 430070, China. Electronic address:

Bovine herpesvirus type 1 (BoHV-1) is a widespread respiratory infection that significantly impacts cattle health worldwide. To address this issue in China, we previously developed a novel double gene-deleted vaccine targeting gG and tk. In this study, we further evaluated the efficacy of this vaccine by challenging vaccinated cattle with a prevalent wild-type BoHV-1 strain and comparing its effectiveness against a commercially available inactivated BoHV-1 vaccine.

View Article and Find Full Text PDF

Bovine herpesvirus 1 (BoHV-1) productive infection induces the generation of DNA double-strand breaks (DSBs), which may consequently lead to cell apoptosis. In response to DSBs, the DNA damage repair-related protein 53BP1 is recruited to the sites of DSBs, leading to the formation of 53BP1foci, which are crucial for the repair of damaged DNA and maintaining genomic integrity by repairing DSBs. In this study, we discovered that HMGA1 may play a significant role in counteracting virus infection-induced DNA damage, as the siRNA-mediated knockdown of HMGA1 protein expression or inhibition of HMGA1 activity by the chemical inhibitor Netropsin uniformly exacerbates the DNA damage induced by BoHV-1 productive infection.

View Article and Find Full Text PDF

Background: Infectious bovine rhinotracheitis (IBR) is a global contagious respiratory disease of ruminants caused by Bovine Herpes virus-1 (BoHV-1). It causes substantial financial losses in the dairy industry worldwide and is considered one of the most important causative agents of abortion and reproductive problems in dairy cattle.

Aim: This study aimed to estimate the seroprevalence of IBR and the related risk factors in the dairy population in Gharbia governorate, Egypt.

View Article and Find Full Text PDF

Berbamine inhibits Pseudorabies virus in vitro and in vivo.

Vet Microbiol

December 2024

College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China; Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, China. Electronic address:

Pseudorabies virus (PRV) is a significant pathogen that causes acute infectious diseases in pigs, resulting in considerable economic losses for the global pig industry. The lack of effective control measures and vaccines against the circulating variants of PRV highlights the pressing need for novel treatment strategies. In this study, a screening of a natural product library identified Berbamine as a promising compound that inhibits PRV replication, with a selectivity index of 17.

View Article and Find Full Text PDF

Virus replication is not required for oncolytic bovine herpesvirus-1 immunotherapy.

Mol Ther Oncol

December 2024

Center for Discovery in Cancer Research, Department of Medicine, McMaster University, Hamilton, ON, Canada.

Article Synopsis
  • Oncolytic viruses, like bovine herpesvirus-1 (BoHV-1), are designed to selectively attack cancer cells while enhancing the body's immune response.
  • Research shows that both live and UV-inactivated (non-replicating) BoHV-1 can effectively extend the survival of mice with tumors by promoting similar immune cell infiltration, excluding neutrophils.
  • Additionally, transcriptomic analysis indicates that both forms of BoHV-1 activate similar biological pathways and gene expressions, challenging the idea that viral replication is essential for their therapeutic benefits.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!