Background: Myocardial native T1 measurements are likely influenced by intramyocardial blood. Since blood T1 is both variable and longer compared to myocardial T1, this will degrade the precision of myocardial T1 measurements. Precision could be improved by correction, but the amount of correction and the optimal blood T1 variables to correct with are unknown. We hypothesized that an appropriate correction would reduce the standard deviation (SD) of native myocardial T1.

Methods: Consecutive patients (n = 400) referred for CMR with known or suspected heart disease were split into a derivation cohort for model construction (n = 200, age 51 ± 18 years, 50% male) and a validation cohort for assessing model performance (n = 200, age 48 ± 17 years, 50% male). Exclusion criteria included focal septal abnormalities. A Modified Look-Locker inversion recovery sequence (MOLLI, 1.5 T Siemens Aera) was used to acquire T1 and T1* maps. T1 and T1* maps were used to measure native myocardial T1, and blood T1 and T1*. A multivariate linear regression correction model was implemented using blood measurement of R1 (1/T1), R1* (1/T1*) or hematocrit. The correction model from the derivation cohort was applied to the validation cohort, and assessed for reduction in variability with the F-test.

Results: Blood [LV + RV] mean R1, mean R1* and hematocrit correlated with myocardial T1 (Pearson's r, range 0.37 to 0.45, p < 0.05 for all) in both the derivation and validation cohorts respectively, suggesting that myocardial T1 measurements are influenced by intramyocardial blood. Mean myocardial native T1 did not differ between the derivation and validation cohorts (1030 ± 42.6 ms and 1023 ± 45.2 ms respectively, p = 0.07). In the derivation cohort, correction using blood mean R1 and mean R1* yielded a decrease in myocardial T1 SD (45.2 ms to 36.6 ms, p = 0.03). When the model from the derivation cohort was applied to the validation cohort, the SD reduction was maintained (39.3 ms, p = 0.049). This 13% reduction in measurement variability leads to a 23% reduction in sample size to detect a 50 ms difference in native myocardial T1.

Conclusions: Correcting native myocardial T1 for R1 and R1* of blood improves the precision of myocardial T1 measurement by ~13%, and could consequently improve disease detection and reduce sample size needs for clinical research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5381013PMC
http://dx.doi.org/10.1186/s12968-017-0353-7DOI Listing

Publication Analysis

Top Keywords

native myocardial
12
derivation cohort
8
n = 200 age
8
50% male
8
validation cohort
8
t1* maps
8
correction model
8
blood
7
myocardial
7
correction
5

Similar Publications

Renal disease is common in patients with cardiovascular disease (CVD) and is associated with adverse outcomes. Cardiac magnetic resonance (CMR) with advanced mapping techniques is the gold standard for characterizing myocardial tissue, and renal tissue is often visualized on these maps. However, it remains unclear whether renal T1 times accurately reflect renal dysfunction or predict adverse outcomes.

View Article and Find Full Text PDF

Decellularization of fish tissues for tissue engineering and regenerative medicine applications.

Regen Biomater

November 2024

Zhejiang Top-Medical Medical Dressing Co. Ltd, Wenzhou, Zhejiang 325025, China.

Decellularization is the process of obtaining acellular tissues with low immunogenic cellular components from animals or plants while maximizing the retention of the native extracellular matrix structure, mechanical integrity and bioactivity. The decellularized tissue obtained through the tissue decellularization technique retains the structure and bioactive components of its native tissue; it not only exhibits comparatively strong mechanical properties, low immunogenicity and good biocompatibility but also stimulates neovascularization at the implantation site and regulates the polarization process of recruited macrophages, thereby promoting the regeneration of damaged tissue. Consequently, many commercial products have been developed as promising therapeutic strategies for the treatment of different tissue defects and lesions, such as wounds, dura, bone and cartilage defects, nerve injuries, myocardial infarction, urethral strictures, corneal blindness and other orthopedic applications.

View Article and Find Full Text PDF

A leadless pacemaker (LP) is a modern alternative to a transvenous pacemaker, allowing certain complications to be avoided; however, some cannot be eliminated. To highlight the essential role of advanced speckle-tracking echocardiography (STE) in diagnosing pacing-induced cardiomyopathy (PICM) caused by an LP. A 79-year-old male, after LP implantation a year earlier, was admitted due to heart failure (HF).

View Article and Find Full Text PDF

We presented a case of a 49-year-old presenting with atypical chest pain and hypertrophic phenotype cardiomyopathy without coronary artery disease. At cardiac magnetic resonance (CMR), the left ventricle was of normal volumes and preserved global ejection fraction with an asymmetric wall hypertrophy. The evaluation of native myocardial T1 has been calculated at an average global value of 924 ms, compatible with hypertrophic phenotype cardiomyopathy with reduced native T1 values as observed in Anderson-Fabry disease.

View Article and Find Full Text PDF

Early Identification of Myocardial Microstructural Alterations in Hypertrophic Cardiomyopathy with in Vivo Cardiac Diffusion-Tensor Imaging.

Radiol Cardiothorac Imaging

February 2025

From the Department of Magnetic Resonance Imaging, Radiology Imaging Center, Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beilishi Road No. 167, Xicheng District, Beijing 100037, China (Z.D., Y.T., G.Y., X.M., S.Y., J.W., X.X., K.Y., M.L., X.C., S.Z.); Clinical and Technical Support, Philips Healthcare, Beijing, China (P.S.); and Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, SZ University Town, Shenzhen, China (K.Z., Y.Z.).

Purpose To explore the diffusion characteristics of hypertrophic cardiomyopathy (HCM) using in vivo cardiac diffusion-tensor imaging (cDTI) and to determine whether cDTI could help identify abnormal myocardium beyond cardiac MRI findings of fibrosis and hypertrophy. Materials and Methods In this prospective study conducted from April to August 2023, participants with HCM and healthy volunteers were enrolled for cardiac MRI evaluation, including cine, late gadolinium enhancement (LGE), T1 mapping, and cDT imaging, using a 3.0-T scanner.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!