Purpose: Quantitative techniques of diffusion analysis allow for an in-vivo investigation of the physiopathology of epilepsies. The objective of this study was to evaluate the variation of the main diffusion parameters and explore differences between two methodologies of voxel-wise analysis comparing a group of patients with mesial temporal lobe epilepsy (MTLE) with controls.
Methods: 24 patients with a diagnosis of MTLE were selected. All patients and a control group of 36 individuals were submitted to 3T magnetic resonance imaging. Diffusion parameters were obtained from the raw images. Based on the tensors, a customized template was created, and images were registered into standard space. Voxel-based comparisons between patients and controls was performed by whole brain voxel-wise analysis and tract-based spatial statistics (TBSS). Tract-specific analysis (TSA) was performed in the mostly damaged fasciculi.
Results: 10 patients presented with right hippocampal sclerosis (HS), 11 with left HS and 3 with bilateral HS with left predominance. Whole brain voxel-wise analysis showed abnormalities mainly localized in the temporal lobes (total volume of 3859mm). TBSS showed more widespread abnormalities (21931mm). TSA pointed to abnormalities situated essentially in the temporal stem topography. Fractional anisotropy (FA) and radial diffusivity (RD) were the parameters that showed more abnormalities.
Conclusion: Whole brain voxel-wise analysis was more restricted than TBSS. The methods were complementary stressing the significance of the findings. The abnormalities were more frequently observed in FA and RD indicating the need for using several diffusion parameters for the investigation of patients with MTLE.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.eplepsyres.2017.03.004 | DOI Listing |
Neuroimage
January 2025
Department of Medical Imaging, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China. Electronic address:
J Oral Facial Pain Headache
March 2024
Department of Acupuncture and Moxibustion, Dongzhimen Hospital Beijing University of Chinese Medicine, 100700 Beijing, China.
The purpose was to explore the spatial centrality of the whole brain functional network related to migraine and to investigate the potential functional hubs associated with migraine. 32 migraine patients and 55 healthy controls were recruited and they received resting-state functional magnetic resonance imaging voluntarily. Voxel-wise Degree Centrality (DC) was measured across the whole brain, and group differences in DC were compared.
View Article and Find Full Text PDFJ Cereb Blood Flow Metab
January 2025
Sheffield Institute for Translational Neuroscience, Division of Neuroscience, School of Medicine and Population Heath, University of Sheffield, Sheffield, UK.
Functional brain changes such as altered cerebral blood flow occur long before the onset of clinical symptoms in Alzheimer's disease (AD) and other neurodegenerative disorders. While cerebral hypoperfusion occurs in established AD, middle-aged carriers of genetic risk factors for AD, including APOE ε4, display regional hyperperfusion due to hypothesised pleiotropic or compensatory effects, representing a possible early biomarker of AD and facilitating earlier AD diagnosis. However, it is not clear whether hyperperfusion already exists even earlier in life.
View Article and Find Full Text PDFFront Neurosci
December 2024
Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.
Objective: High Angular Resolution Diffusion Imaging (HARDI) models have emerged as a valuable tool for investigating microstructure with a higher degree of detail than standard diffusion Magnetic Resonance Imaging (dMRI). In this study, we explored the potential of multiple advanced microstructural diffusion models for investigating preterm birth in order to identify non-invasive markers of altered white matter development.
Approach: Rather than focusing on a single MRI modality, we studied on a compound of HARDI techniques in 46 preterm babies studied on a 3T scanner at term-equivalent age and in 23 control neonates born at term.
Hum Brain Mapp
January 2025
Amsterdam UMC, Department of Radiology and Nuclear Medicine, University of Amsterdam, Amsterdam, the Netherlands.
Accurately predicting individual antidepressant treatment response could expedite the lengthy trial-and-error process of finding an effective treatment for major depressive disorder (MDD). We tested and compared machine learning-based methods that predict individual-level pharmacotherapeutic treatment response using cortical morphometry from multisite longitudinal cohorts. We conducted an international analysis of pooled data from six sites of the ENIGMA-MDD consortium (n = 262 MDD patients; age = 36.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!