A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Origins of PDZ Binding Specificity. A Computational and Experimental Study Using NHERF1 and the Parathyroid Hormone Receptor. | LitMetric

Na/H exchanger regulatory factor-1 (NHERF1) is a scaffolding protein containing two PSD95/discs large protein/ZO1 (PDZ) domains that modifies the signaling, trafficking, and function of the parathyroid hormone receptor (PTHR), a family B G-protein-coupled receptor. PTHR and NHERF1 bind through a PDZ-ligand-recognition mechanism. We show that PTH elicits phosphorylation of Thr591 in the canonical -ETVM binding motif of PTHR. Conservative substitution of Thr591 with Cys does not affect PTH(1-34)-induced cAMP production or binding of PTHR to NHERF1. The findings suggested the presence of additional sites upstream of the PDZ-ligand motif through which the two proteins interact. Structural determinants outside the canonical NHERF1 PDZ-PTHR interface that influence binding have not been characterized. We used molecular dynamics (MD) simulation to predict residues involved in these interactions. Simulation data demonstrate that the negatively charged Glu side chains at positions -3, -5, and -6 upstream of the PDZ binding motif are involved in PDZ-PTHR recognition. Engineered mutant peptides representing the PTHR C-terminal region were used to measure the binding affinity with NHERF1 PDZ domains. Comparable micromolar affinities for peptides of different length were confirmed by fluorescence polarization, isothermal titration calorimetry, and surface plasmon resonance. Binding affinities measured for Ala variants validate MD simulations. The linear relation between the change in enthalpy and entropy following Ala substitutions at upstream positions -3, -5, and -6 of the PTHR peptide provides a clear example of the thermodynamic compensation rule. Overall, our data highlight sequences in PTHR that contribute to NHERF1 interaction and can be altered to prevent phosphorylation-mediated inhibition.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5479578PMC
http://dx.doi.org/10.1021/acs.biochem.7b00078DOI Listing

Publication Analysis

Top Keywords

pdz binding
8
parathyroid hormone
8
hormone receptor
8
pdz domains
8
receptor pthr
8
pthr nherf1
8
binding motif
8
binding
7
nherf1
7
pthr
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!