The N-terminal extension (NTE) of plant phytochromes has been suggested to play a functional role in signaling photoinduced structural changes. Here, we use resonance Raman spectroscopy to study the effect of the NTE on the chromophore structure of B-type phytochromes from two evolutionarily distant plants. NTE deletion seems to have no effect on the chromophore in the inactive Pr state, but alters the torsion of the C-D ring methine bridge and the surrounding hydrogen bonding network in the physiologically active Pfr state. These changes are accompanied by a shift of the conformational equilibrium between two Pfr substates, which might affect the thermal isomerization rate of the C-D double bond and, thus, account for the effect of the NTE on the dark reversion kinetics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/1873-3468.12642 | DOI Listing |
Unlabelled: Bactofilins are a recently discovered class of cytoskeletal protein, widely implicated in subcellular organization and morphogenesis in bacteria and archaea. Several lines of evidence suggest that bactofilins polymerize into filaments using a central β-helical core domain, flanked by variable N- and C-terminal domains that may be important for scaffolding and other functions. However, a systematic exploration of the characteristics of these domains has yet to be performed.
View Article and Find Full Text PDFJ Biol Chem
December 2024
Department of Molecular Biology and Biophysics, UCONN Health, Farmington, CT 06032, USA. Electronic address:
Biochem Biophys Res Commun
January 2025
Center of Protein Studies, Faculty of Biology, Havana University, Havana, Cuba.
Sticholysin I and II (St I/II) belong to the actinoporins family; these proteins form pores in host cell membranes by binding their N-terminal segment to the membrane, leading to protein-lipid (toroidal) pores. Peptides derived from actinoporins pore-forming domains replicate their folding properties and permeabilizing effects. Despite the advances in understanding how these proteins and peptides mediate pore formation, the role of different N-terminal segments in inducing membrane curvature is still unclear.
View Article and Find Full Text PDFUnlabelled: The chloroplast Twin Arginine Transport (cpTAT) protein translocation pathway is one of the thylakoid membrane's two protein transport pathways for getting proteins into the lumen. The cpTAT system distinguishes itself by transporting fully folded proteins across the thylakoid, using the sole energy source of the proton motive force (PMF). The cpTAT pathway is evolutionarily conserved with the TAT pathway found in many bacteria and archaea.
View Article and Find Full Text PDFCirculation
November 2024
Department of Medicine, Columbia University Irving Medical Center, New York, NY.
Background: In the phase 3 randomized controlled study, ATTRibute-CM, acoramidis, a transthyretin (TTR) stabilizer, demonstrated significant efficacy on the primary endpoint. Participants with transthyretin amyloid cardiomyopathy (ATTR-CM) who completed ATTRibute-CM were invited to enroll in an open-label extension study (OLE). We report efficacy and safety data of acoramidis in participants who completed ATTRibute-CM and enrolled in the ongoing OLE.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!