Purpose: During economic recession people with mental health problems have higher risk of losing their job. This paper analyses the issue by considering the Italian rates of unemployment amongst individuals with and without mental health problems in 2005 and 2013, that is prior and during the economic crisis.
Methods: We used data from the National surveys on "Health conditions and use of health services" carried out by the Italian National Institute of Statistics (ISTAT) for the years 2005 and 2013. The surveys collected information on the health status and socioeconomic conditions of the Italian population. Self-reported unemployment status was analysed amongst individuals with and without reported mental health problems. In addition, descriptive statistics were performed in order to detect possible differences in the risk of unemployment within different regional contexts characterised by different socio-economic conditions.
Results: The recession determined increased disparities in unemployment rates between people with and without mental health problems. Regardless to the presence of mental health problems, young people were more likely to be unemployed. Among people who reported mental health problems, males were more likely to be unemployed than females. People with low education level were more likely to be unemployed, particularly during the recession and in presence of mental health problems. Changes in unemployment rates due to the crisis showed different patterns across different regions of the Country.
Conclusions: These analyses confirm that in periods of economic crisis people with mental health problems are at risk of experiencing exclusion from labour market. In addition, the impact is even worse within the group with low education and younger age. These findings emphasise the importance of specific interventions aimed at promoting labour market participation and reintegration for people with mental health problems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5380304 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0174135 | PLOS |
Brain
January 2025
Translational Neuroimaging Laboratory, Montreal Neurological Institute, H3A 2B4, Montreal, Canada.
Plasma phosphorylated tau biomarkers open unprecedented opportunities for identifying carriers of Alzheimer's disease pathophysiology in early disease stages using minimally invasive techniques. Plasma p-tau biomarkers are believed to reflect tau phosphorylation and secretion. However, it remains unclear to what extent the magnitude of plasma p-tau abnormalities reflects neuronal network disturbance in the form of cognitive impairment.
View Article and Find Full Text PDFJMIR Res Protoc
January 2025
Data and Web Science Group, School of Business Informatics and Mathematics, University of Manneim, Mannheim, Germany.
Background: The rapid evolution of large language models (LLMs), such as Bidirectional Encoder Representations from Transformers (BERT; Google) and GPT (OpenAI), has introduced significant advancements in natural language processing. These models are increasingly integrated into various applications, including mental health support. However, the credibility of LLMs in providing reliable and explainable mental health information and support remains underexplored.
View Article and Find Full Text PDFJMIR Ment Health
January 2025
Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.
Background: Mental health concerns have become increasingly prevalent; however, care remains inaccessible to many. While digital mental health interventions offer a promising solution, self-help and even coached apps have not fully addressed the challenge. There is now a growing interest in hybrid, or blended, care approaches that use apps as tools to augment, rather than to entirely guide, care.
View Article and Find Full Text PDFJMIR Form Res
January 2025
School of Psychology, Ulster University, Coleraine, United Kingdom.
Background: Psychologists have developed frameworks to understand many constructs, which have subsequently informed the design of digital mental health interventions (DMHIs) aimed at improving mental health outcomes. The science of happiness is one such domain that holds significant applied importance due to its links to well-being and evidence that happiness can be cultivated through interventions. However, as with many constructs, the unique ways in which individuals experience happiness present major challenges for designing personalized DMHIs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!