The presence of ferroelectric polarization in 2D materials is extremely rare due to the effect of the surface depolarizing field. Here, we use first-principles calculations to show the largest out-of-plane polarization observed in a monolayer in functionalized MXenes (ScCO). The switching of polarization in this new class of ferroelectric materials occurs through a previously unknown intermediate antiferroelectric structure, thus establishing three states for applications in low-dimensional nonvolatile memory. We show that the armchair domain interface acts as an 1D metallic nanowire separating two insulating domains. In the case of the van der Waals bilayer we observe, interestingly, the presence of an ultrathin 2D electron/hole gas (2DEG) on the top/bottom layers, respectively, due to the redistrubution of charge carriers. The 2DEG is nondegenerate due to spin-orbit coupling, thus paving the way for spin-orbitronic devices. The coexistence of ferroelectricity, antiferroelectricity, 2DEG, and spin-orbit splitting in this system suggests that such 2D polar materials possess high potential for device application in a multitude of fields ranging from nanoelectronics to photovoltaics.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.7b01035DOI Listing

Publication Analysis

Top Keywords

ferroelectricity antiferroelectricity
8
ultrathin electron/hole
8
electron/hole gas
8
antiferroelectricity ultrathin
4
gas multifunctional
4
multifunctional monolayer
4
monolayer mxene
4
mxene presence
4
presence ferroelectric
4
ferroelectric polarization
4

Similar Publications

Multiple Polarization States in Hf ZrO Thin Films by Ferroelectric and Antiferroelectric Coupling.

Adv Mater

December 2024

Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, School of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105, China.

HfO-based multi-bit ferroelectric memory combines non-volatility, speed, and energy efficiency, rendering it a promising technology for massive data storage and processing. However, some challenges remain, notably polarization variation, high operation voltage, and poor endurance performance. Here we show Hf ZrO (x = 0.

View Article and Find Full Text PDF

Synergistic Enhancement of Energy Storage Performance in NaNbO-Based Lead-Free Relaxor Ferroelectrics via Weakly Coupled Relaxation Behavior.

Small

December 2024

Collaborative Innovation Center for Exploration of Hidden Nonferrous Metal Deposits and Development of New Materials in Guangxi, Key Laboratory of Nonferrous Materials and New Processing Technology, Ministry of Education, Guangxi Key Laboratory of Optoelectronic Materials and Devices, School of Materials Science and Engineering, Guilin University of Technology, Guilin, 541004, China.

Advancements in pulsed electronic power systems depend significantly on high-performance dielectric energy storage ceramics. Lead-free NaNbO-based energy-storage ceramics are important materials for next-generation pulsed power capacitors owing to their large polarization and bandgaps. However, the high energy loss caused by the antiferroelectric-ferroelectric phase transition leads to low recoverable energy storage density and efficiency, which hinders its practical application.

View Article and Find Full Text PDF

The challenge in developing molecule-based electronic materials lies in the uncontrollable or unpredictable nature of their crystal structures, which are crucial for determining both electrical properties and thin-film formability. This review summarizes the findings of a research project focused on the systematic development of crystalline organic semiconductors (OSCs) and organic ferroelectrics by integrating experimental, computational, and data sciences. The key outcomes are as follows: 1) Data Science: We developed a method to identify promising materials from crystal structure databases, leading to the discovery of unique molecule-based ferroelectrics.

View Article and Find Full Text PDF

The progress of power systems and electronic devices promotes the development of lead-free dielectric energy-storage material. Particularly, NaBiTiO-based ferroelectric ceramics featuring large spontaneous polarization as well as wide dielectric adjustability and stability are highly recognized as promising candidates. However, their large remanent polarization () and low electric breakdown strength () result in unsatisfactory recoverable energy density () and/or energy conversion efficiency (η), severely restricting their energy-storage applications.

View Article and Find Full Text PDF

Noncollinear ferroelectric and screw-type antiferroelectric phases in a metal-free hybrid molecular crystal.

Nat Commun

November 2024

Chaotic Matter Science Research Center, Department of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, China.

Noncollinear dipole textures greatly extend the scientific merits and application perspective of ferroic materials. In fact, noncollinear spin textures have been well recognized as one of the core issues of condensed matter, e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!