Future climate forcing potentially without precedent in the last 420 million years.

Nat Commun

School of Geographical Sciences and Cabot Institute, University of Bristol, University Road, Bristol BS8 1SS, UK.

Published: April 2017

The evolution of Earth's climate on geological timescales is largely driven by variations in the magnitude of total solar irradiance (TSI) and changes in the greenhouse gas content of the atmosphere. Here we show that the slow ∼50 Wm increase in TSI over the last ∼420 million years (an increase of ∼9 Wm of radiative forcing) was almost completely negated by a long-term decline in atmospheric CO. This was likely due to the silicate weathering-negative feedback and the expansion of land plants that together ensured Earth's long-term habitability. Humanity's fossil-fuel use, if unabated, risks taking us, by the middle of the twenty-first century, to values of CO not seen since the early Eocene (50 million years ago). If CO continues to rise further into the twenty-third century, then the associated large increase in radiative forcing, and how the Earth system would respond, would likely be without geological precedent in the last half a billion years.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5382278PMC
http://dx.doi.org/10.1038/ncomms14845DOI Listing

Publication Analysis

Top Keywords

radiative forcing
8
future climate
4
climate forcing
4
forcing precedent
4
precedent 420
4
years
4
420 years
4
years evolution
4
evolution earth's
4
earth's climate
4

Similar Publications

Growing contribution to radiative forcing from China's on-farm nitrous oxide emissions requires more attention.

Sci Total Environ

January 2025

Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton South, Melbourne, Victoria 3169, Australia; Department of Agricultural Economics, University of the Free State, Bloemfontein 9300, South Africa.

Agricultural systems are important emission sources of non-CO greenhouse gases (GHGs), including the relatively short-lived GHG methane (CH). As a pivotal emitter, China's CH emissions have received wide attention. For the first time, this study applied an indicator of radiative forcing-based climate footprint (RFCF) to compare the climate impacts of China's on-farm non-CO GHG emissions including CH and nitrous oxide (NO).

View Article and Find Full Text PDF

The 1831 CE mystery eruption identified as Zavaritskii caldera, Simushir Island (Kurils).

Proc Natl Acad Sci U S A

January 2025

Archaeology & Palaeoecology, School of Natural and Built Environment, Queen's University, Belfast BT9 3AZ, United Kingdom.

Polar ice cores and historical records evidence a large-magnitude volcanic eruption in 1831 CE. This event was estimated to have injected ~13 Tg of sulfur (S) into the stratosphere which produced various atmospheric optical phenomena and led to Northern Hemisphere climate cooling of ~1 °C. The source of this volcanic event remains enigmatic, though one hypothesis has linked it to a modest phreatomagmatic eruption of Ferdinandea in the Strait of Sicily, which may have emitted additional S through magma-crust interactions with evaporite rocks.

View Article and Find Full Text PDF

The current investigation explores tri-hybrid mediated blood flow through a ciliary annular model, designed to emulate an endoscopic environment. The human circulatory system, driven by the metachronal ciliary waves, is examined in this study to understand how ternary nanoparticles influence wave-like flow dynamics in the presence of interfacial nanolayers. We also analyze the effect of an induced magnetic field on Ag-Cu-/blood flow within the annulus, focusing on thermal radiation, heat sources, buoyancy forces and ciliary motion.

View Article and Find Full Text PDF

Mechanosensitive stacking structure with continuous solar controllability for real-time thermal management.

Mater Horiz

January 2025

State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China.

Adaptive control of solar light based on an optical switching strategy is essential to tune thermal gain, while real-time solar regulation and hence on-demand thermal management coupled with dynamic conditions still faces a formidable challenge. Herein, we develop a stacking structure which is mechanosensitive and can be finely tuned depending on the dynamic cavitation effect. Specifically, the stacking structure transfers from a solid monolith state to porous layered state progressively under mechanical stretching, and the resulting porous layered state gradually goes back to the solid monolith state once the load is released.

View Article and Find Full Text PDF

Millimeter-wave and terahertz integrated circuits and chips are expected to serve as the backbone for future wireless networks and high resolution sensing. However, design of these integrated circuits and chips can be quite complex, requiring years of human expertise, careful tailoring of hand crafted circuit topologies and co-design with parameterized and pre-selected templates of electromagnetic structures. These structures (radiative and non-radiative, single-port and multi-ports) are subsequently optimized through ad-hoc methods and parameter sweeps.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!