Sleep is considered to be an important predictor of the immunity, since the absence of sleep can affect the development of the immune response, and consequently increase the susceptibility to contract an infection. The aim of the present study was to investigate if sleep deprivation and stress induce dysregulation of the duodenal mucous membrane during the acute infection with Trichinella spiralis. Our results shows that, in the intestinal mucous membrane, stress and sleep deprivation, produces different effect in the cells, and this effect depends on the studied duodenal compartment, glands or villi. The sleep deprivation affect mast cells mainly, and the stress response is more heterogeneous. Interestingly, in the duodenal mucous membrane, none population of cells in the infected groups responded equally to both conditions. These findings suggest that the response of the intestinal mucous membrane during the infection caused for T. spiralis turns out to be affected in the sleep-deprived rats, therefore, the results of the present study sustain the theory that sleep is a fundamental process that is capable of modulating the immune response of mucous membranes, particularly the one generated against the parasite Trichinella spiralis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5379483PMC
http://dx.doi.org/10.1038/srep45528DOI Listing

Publication Analysis

Top Keywords

sleep deprivation
16
mucous membrane
16
infection trichinella
8
immune response
8
duodenal mucous
8
trichinella spiralis
8
intestinal mucous
8
sleep
7
mucous
5
innate immunity
4

Similar Publications

Purpose: Sleep deprivation and elevated blood pressure (BP) increase the risk of cardiovascular diseases. However, the effects of sleep deprivation on BP response, especially at exercise onset remain unclear. We aimed to elucidate the effects of experimental sleep deprivation (ESD) on resting and exercise BPs, including that at exercise onset, and investigate whether a night-time nap during ESD changes the ESD-altered BP.

View Article and Find Full Text PDF

Biomarkers.

Alzheimers Dement

December 2024

Sorbonne Université, Paris Brain Institute (ICM), INSERM, CNRS, UMR-1127, Mov'It, DreamTeam, Paris, France.

Background: Spectral power of slow rhythms in resting-state EEG increases along Alzheimer's disease (AD) continuum. Besides, recent studies have revealed 1) the importance of analyzing the aperiodic component of an EEG power spectrum and 2) the intrusions of sleep-like slow waves identifiable in wake EEG of animals and young adults. Importantly, the occurrence of these wake slow waves is known i) to increase after sleep deprivation, ii) to be associated with markers of sleepiness, and iii) to predict behavioral errors at different tasks.

View Article and Find Full Text PDF

Background: Epidemiological studies indicate that chronic short sleep and/or disrupted sleep are all associated with metabolic dysfunction, cardiovascular risk, cognitive impairments, and increased risk for Alzheimer's disease. We have shown that acute sleep deprivation disrupts proteostasis, leading to the activation of an adaptive endoplasmic reticulum (ER) stress response known as the unfolded protein response (UPR). However, prolonged ER stress triggers the integrated stress response, which has been implicated in memory impairments.

View Article and Find Full Text PDF

Compound 38, a novel potent and selective antagonist of adenosine A receptor, enhances arousal in mice.

Acta Pharmacol Sin

January 2025

Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Joint International Research Laboratory of Sleep, Fudan University, Shanghai, 200032, China.

Adenosine A receptor (AR) plays a pivotal role in the regulation of sleep-wake behaviors. We previously reported an AR selective antagonist compound 38 with an IC value of 29.0 nM.

View Article and Find Full Text PDF

Angelica gigas Nakai (AGN) root is a medicinal herbal widely used in traditional medicine in Korea. AGN root ethanolic extracts have been marketed as dietary supplements in the United States for memory health and pain management. We have recently reviewed the pharmacokinetics (PK) and first-pass hepatic metabolism of ingested AGN supplements in humans for the signature pyranocoumarins decursin (D, C 1x), decursinol angelate (DA, C ~ 10x) and their common botanical precursor and hepatic metabolite decursinol (DOH, C ~ 1000x).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!