Human seizures couple across spatial scales through travelling wave dynamics.

Nat Commun

Department of Mathematics and Statistics, Boston University, Boston, Massachusetts 02215, USA.

Published: April 2017

Epilepsy-the propensity toward recurrent, unprovoked seizures-is a devastating disease affecting 65 million people worldwide. Understanding and treating this disease remains a challenge, as seizures manifest through mechanisms and features that span spatial and temporal scales. Here we address this challenge through the analysis and modelling of human brain voltage activity recorded simultaneously across microscopic and macroscopic spatial scales. We show that during seizure large-scale neural populations spanning centimetres of cortex coordinate with small neural groups spanning cortical columns, and provide evidence that rapidly propagating waves of activity underlie this increased inter-scale coupling. We develop a corresponding computational model to propose specific mechanisms-namely, the effects of an increased extracellular potassium concentration diffusing in space-that support the observed spatiotemporal dynamics. Understanding the multi-scale, spatiotemporal dynamics of human seizures-and connecting these dynamics to specific biological mechanisms-promises new insights to treat this devastating disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5382286PMC
http://dx.doi.org/10.1038/ncomms14896DOI Listing

Publication Analysis

Top Keywords

spatial scales
8
devastating disease
8
spatiotemporal dynamics
8
human seizures
4
seizures couple
4
couple spatial
4
scales travelling
4
travelling wave
4
dynamics
4
wave dynamics
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!