We provide a user guide on the analysis of data (including best-worst and best-best data) generated from discrete-choice experiments (DCEs), comprising a theoretical review of the main choice models followed by practical advice on estimation and post-estimation. We also provide a review of standard software. In providing this guide, we endeavour to not only provide guidance on choice modelling but to do so in a way that provides a 'way in' for researchers to the practicalities of data analysis. We argue that choice of modelling approach depends on the research questions, study design and constraints in terms of quality/quantity of data and that decisions made in relation to analysis of choice data are often interdependent rather than sequential. Given the core theory and estimation of choice models is common across settings, we expect the theoretical and practical content of this paper to be useful to researchers not only within but also beyond health economics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s40273-017-0506-4 | DOI Listing |
Animals capable of complex behaviors tend to have more distinct brain areas than simpler organisms, and artificial networks that perform many tasks tend to self-organize into modules (1-3). This suggests that different brain areas serve distinct functions supporting complex behavior. However, a common observation is that essentially anything that an animal senses, knows, or does can be decoded from neural activity in any brain area (4-6).
View Article and Find Full Text PDFJ Cogn
January 2025
Center for Adaptive Rationality, Max Planck Institute for Human Development, Berlin, Germany.
People's understanding of topics and concepts such as risk, sustainability, and intelligence can be important for psychological researchers and policymakers alike. One underexplored way of accessing this information is to use free associations to map people's mental representations. In this tutorial, we describe how free association responses can be collected, processed, mapped, and compared across groups using the R package .
View Article and Find Full Text PDFEndosc Ultrasound
December 2024
Department of Gastroenterology, Ponderas Academic Hospital, Bucharest, Romania.
Background: EUS-guided fine-needle biopsy is the procedure of choice for the diagnosis of pancreatic ductal adenocarcinoma (PDAC). Nevertheless, the samples obtained are small and require expertise in pathology, whereas the diagnosis is difficult in view of the scarcity of malignant cells and the important desmoplastic reaction of these tumors. With the help of artificial intelligence, the deep learning architectures produce a fast, accurate, and automated approach for PDAC image segmentation based on whole-slide imaging.
View Article and Find Full Text PDFAlthough large language models (LLMs) have been assessed for general medical knowledge using medical licensing exams, their ability to effectively support clinical decision-making tasks, such as selecting and using medical calculators, remains uncertain. Here, we evaluate the capability of both medical trainees and LLMs to recommend medical calculators in response to various multiple-choice clinical scenarios such as risk stratification, prognosis, and disease diagnosis. We assessed eight LLMs, including open-source, proprietary, and domain-specific models, with 1,009 question-answer pairs across 35 clinical calculators and measured human performance on a subset of 100 questions.
View Article and Find Full Text PDFPurpose: We present an updated study evaluating the performance of large language models (LLMs) in answering radiation oncology physics questions, focusing on the recently released models.
Methods: A set of 100 multiple choice radiation oncology physics questions, previously created by a well-experienced physicist, was used for this study. The answer options of the questions were randomly shuffled to create "new" exam sets.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!