Purpose: Succinate dehydrogenase subunit B (SDHB) gene mutations are associated with an aggressive clinical disease course of pheochromocytoma/paraganglioma (PHEO/PGL). Limited information is available concerning PHEO/PGL penetrance among SDHB mutation carriers with regards to primary tumor location, specific mutation type, and gender. We assessed PHEO/PGL penetrance in SDHB mutation carriers and described the clinical presentation and disease course.
Methods: Asymptomatic relatives (N = 611) of 103 index patients were tested for SDHB mutations. Mutation carriers (N = 328) were offered PHEO/PGL screening, of which 241 participated and were included in penetrance analysis. For additional disease outcome analysis, the 103 index patients and 40 screened individuals who developed PHEO/PGL were included. Clinical data were collected between October 2004 and June 2016.
Results: Forty (16.60%) of the 241 screened individuals developed PHEO/PGL during the study. The penetrance estimate in this population was 49.80% (95% CI 29-74.9) at 85 years. A significantly higher age-related penetrance of disease was observed in males compared to females, with 50% penetrance achieved at age 74 vs. not reached. Age-related penetrance analysis demonstrated 4 mutations (Ile127Ser, IVS1+1G>T, Exon 1 deletion, Arg90X) presenting with a slower rate of disease development (50% penetrance ages, respectively: not achieved, 70, 63, 61 years) compared to Arg46X and Val140Phe mutations (50% penetrance at 38 years).
Conclusions: Here, we found a higher estimated penetrance compared to several other studies, and a striking difference in age-related penetrance between male and female SDHB mutation carriers with no association between mutation and gender or tumor location.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5505780 | PMC |
http://dx.doi.org/10.1007/s00432-017-2397-3 | DOI Listing |
Poult Sci
December 2024
Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea; Department of International Agricultural Technology & Institute of Green Bioscience and Technology, Seoul National University, Pyeongchang, Republic of Korea. Electronic address:
The tumor virus A receptor (TVA), a member of the low-density lipoprotein receptor (LDLR) family, serves as an entry receptor for Avian Leukosis Virus (ALV) subgroups A and K, as well as a receptor for vitamin B bound to transcobalamin. Naturally occurring genetic variants in the TVA gene determine susceptibility or resistance to ALV-A and -K, but the effects of these mutated TVA on vitamin B uptake have not been investigated systemically. We found four TVA variants comprising the wild type (TVA), a single nucleotide polymorphism variant (TVA), and two partial deletions in the splicing branch point region (TVA).
View Article and Find Full Text PDFParkinsonism Relat Disord
December 2024
Department of Neurology and Institute of Neurology, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai, China. Electronic address:
Introduction: The SNP rs2414739 of Vacuolar protein sorting 13 homolog C(VPS13C) gene was identified to be linked with Parkinson's Disease (PD).
Objectives: Explore the clinical progression feature of PD patients with rs2414739 variant.
Methods: Longitudinal data were obtained from the Parkinson's Progression Marker Initiative (PPMI) cohorts.
Alzheimers Dement
December 2024
Washington University School of Medicine, Saint Louis, MO, USA.
Background: A recent case report described an individual who was a homozygous carrier of the APOE3 Christchurch (APOE3ch) mutation and resistant to autosomal dominant Alzheimer's Disease (AD) caused by a PSEN1-E280A mutation. Whether APOE3ch contributed to the protective effect remains unclear.
Method: We generated a humanized APOE3ch knock-in mouse and crossed it to an amyloid-β (Aβ) plaque-depositing model.
Background: Autosomal dominant Alzheimer's Disease (ADAD) represents around 0.5% of all AD cases, and is caused by mutations in PSEN1, PSEN2 and APP genes. Gene expression studies can be useful for unravelling the physiopathology of AD and identifying potential biomarkers.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Brain Research Institute, Niigata University, Niigata, Niigata, Japan.
Background: Recent single-cell omics analyses have revealed that microglia change into reactive microglia when Aβ accumulates in the brain and exhibit Aβ phagocytosis. However, reactive microglia are less likely to be induced in TREM2 mutation carriers. This microglia-centred pathological mechanism may be considered one of the pathologies of AD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!