The periaqueductal gray matter (PAG) is rich in mu and kappa opioid receptors, and this system is involved in thermoregulation, analgesia, and defensive behaviors. No study approached the involvement of the PAG opioids in body temperature (Tb) regulation during psychological stress such as restraint. Because activation of mu and kappa receptors increases and reduces Tb, respectively, we tested the hypothesis that they exert excitatory and inhibitory modulation, respectively, of the restraint-induced fever in rats. To this end, Tb, heat loss index (HLI, inference for peripheral vasoconstriction/vasodilation), and oxygen consumption (inference for thermogenesis) were monitored in unanesthetized rats, restrained or unrestrained, before and after intra-PAG microinjection of the selective mu opioid receptor antagonist (D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH cyclic, CTAP; 1 and 10 μg/100 nL) or the selective kappa opioid receptor antagonist (nor-binaltorphimine dihydrochloride, nor-BNI; 1 and 4 μg/100 nL) or saline (100 nL). CTAP and nor-BNI did not change the Tb or HLI of euthermic animals. During restraint, Tb increased (1.0 ± 0.1 °C) in all groups; however, this effect was lower in those animals treated with CTAP and higher in animals treated with nor-BNI. The HLI decreased during restraint and increased after animals were released, but this response was not affected by any treatment. Restraint stress increased oxygen consumption (35.9 ± 3.9% elevation), but this response was diminished by CTAP and overstimulated by nor-BNI. Confirming our hypothesis, the results indicate that the mu and kappa opioid receptors in the PAG of rats play a pyrogenic and antipyretic role, respectively, during fever induced by restraint by affecting the thermogenic but not the heat conservation effector.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00424-017-1966-2 | DOI Listing |
J Pain Res
January 2025
Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu, Korea.
Background: The tooth exhibits increased sensitivity to noxious stimuli due to the dense innervation of thin myelinated Aδ fibers and unmyelinated C fibers within the dental pulp. While prior research has identified dynorphin expression in layers I-II of the dorsal horn across the spinal cord in various pain models, its functional role in trigeminal nociception, including tooth pain, remains underexplored. This study examines the potential role of dynorphin in the nociceptive processing of dental stimuli.
View Article and Find Full Text PDFNeuropharmacology
January 2025
Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229, USA. Electronic address:
Kappa opioid receptors (KOR) expressed by peripheral pain-sensing neurons (nociceptors) are a promising target for development of effective and safer analgesics for inflammatory pain that are devoid of central nervous system adverse effects. Here we sought to delineate the signaling pathways that underlie peripheral KOR-mediated antinociception in adult male and female Sprague-Dawley rats. In an inflammatory model of pain, local intraplantar (i.
View Article and Find Full Text PDFDrugs
January 2025
Palliative Medicine, Geisinger Medical Center, Danville, PA, USA.
Buprenorphine is an agonist at the mu opioid receptor (MOR) and antagonist at the kappa (KOR) and delta (DOR) receptors and a nociceptin receptor (NOR) ligand. Buprenorphine has a relatively low intrinsic efficacy for G-proteins and a long brain and MOR dwell time. Buprenorphine ceiling on respiratory depression has theoretically been related multiple factors such as low intrinsic efficacy at MOR, binding to six-transmembrane MOR and interactions in MOR/NOR heterodimers.
View Article and Find Full Text PDFLarge library docking of tangible molecules has revealed potent ligands across many targets. While make-on-demand libraries now exceed 75 billion enumerated molecules, their synthetic routes are dominated by a few reaction types, reducing diversity and inevitably leaving many interesting bioactive-like chemotypes unexplored. Here, we investigate the large-scale enumeration and targeted docking of isoquinuclidines.
View Article and Find Full Text PDFBioorg Med Chem Lett
January 2025
Contineum Therapeutics, 3565 General Atomics Court, Suite 200, San Diego, CA 92121, United States.
Novel kappa opioid receptor (KOR) agonists that preferentially activate G-protein signaling versus β-arrestin-2 recruitment are described. Starting from a literature-reported phenol-containing diphenethylamine KOR agonist, structure-activity relationship (SAR) studies revealed replacement of the phenol with various non-hydroxylated bicyclic heteroaromatics led to tertiary diarylethylamines which retained KOR agonist activity and improved metabolic stability in human liver microsomes. Further optimizations produced compound 39, a potent activator of G-protein signaling (GTPγS EC = 14 nM, 83 % E) that did not elicit a β-arrestin-2 recruitment functional response (E < 10 %).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!