Neutrophils contain a number of proteinases active at neutral pH which are able to degrade extracellular matrices. We have determined the contribution of the major neutral proteinases to human neutrophil-mediated degradation of glomerular basement membrane type IV collagen in an in vitro model of immune complex-induced injury. Studies with proteinase inhibitors showed that with intact neutrophils stimulated by immune complexes trapped within the basement membrane, approximately 70% of the degradation was due to serine proteinases and 30% to metalloproteinases. Identical results were obtained with cell-free medium containing neutrophil granule contents. Elastase accounted for almost all the digestion by serine proteinases with a minimal contribution by cathepsin G. All the metalloproteinase activity was due to gelatinase rather than collagenase, and purified gelatinase was also shown to degrade basement membrane collagen. Hence, gelatinase has activity against type IV collagen and may be able to degrade collagens not cleaved by specific collagenases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0174-173x(88)80023-2 | DOI Listing |
Background: Alport syndrome (AS) is a multifaceted condition that primarily affects the basement membranes of the kidneys, ears, and eyes. AS is considered the second most common cause of hereditary renal failure, exhibiting varied clinical manifestations across different lifespans. The aim of this study is to investigate the clinical features and genetic profile of AS and to elucidate the genotype-phenotype correlation of AS.
View Article and Find Full Text PDFObesity is a global health crisis, with its prevalence particularly severe in the United States, where over 42% of adults are classified as obese. Obesity is driven by complex molecular and tissue-level mechanisms that remain poorly understood. Among these, angiogenesis-primarily mediated by vascular endothelial growth factor (VEGF-A)-is critical for adipose tissue expansion but presents unique challenges for therapeutic targeting due to its intricate regulation.
View Article and Find Full Text PDFZhonghua Bing Li Xue Za Zhi
January 2025
Department of Pathology, Jinling Hospital, Nanjing University School of Medicine, Nanjing210002, China.
To investigate the clinicopathological features, immunophenotype, molecular characteristics, and differential diagnosis of MED15-TFE3 gene fusion renal cell carcinoma (MED15-TFE3 RCC). A total of 12 MED15-TFE3 RCCs, diagnosed from 2016 to 2023, were collected from the Department of Pathology of Nanjing Jinling Hospital, Nanjing University School of Medicine, Nanjing, China for clinicopathologic, immunohistochemical, fluorescence in situ hybridization (FISH) and RNA sequencing (RNA-seq) analyses and follow-up. In addition, its diagnosis and differential diagnosis were also explored.
View Article and Find Full Text PDFJ Vis Exp
December 2024
Division of Exercise Physiology, Department of Health Professions, West Virginia University School of Medicine; Cancer Institute, West Virginia University School of Medicine; 3Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine;
Patient-derived xenografts (PDXs) provide a clinically relevant method for recapitulating tumor-involved cell types and the tumor microenvironment, which is essential for advancing knowledge of breast cancer (BC). Additionally, PDX models enable the study of BC systemic effects, which is not possible using in vitro models. Traditional methods for implanting BC xenografts typically involve anesthesia and sterile surgical procedures, which are time-consuming, invasive, and limit the scalability of PDX models in BC research.
View Article and Find Full Text PDFBMB Rep
January 2025
Department of Pharmacology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; Department of Medical Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea; Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.
Atopic dermatitis (AD) is a chronic, pruritic skin disease characterized by inflammation and skin lesion cornification. While the use of corticosteroids like dexamethasone (DXM), an antiinflammatory drug, improves symptoms temporarily and quickly, this use is not a cure. Thus, we aimed to identify a new therapeutic strategy for AD using quantum molecular resonance (QMR), a novel non-invasive technique with an electromagnetic field-based therapeutic approach as an alternative to pain killers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!