A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Unveiling the carrier transport mechanism in epitaxial graphene for forming wafer-scale, single-domain graphene. | LitMetric

Graphene epitaxy on the Si face of a SiC wafer offers monolayer graphene with unique crystal orientation at the wafer-scale. However, due to carrier scattering near vicinal steps and excess bilayer stripes, the size of electrically uniform domains is limited to the width of the terraces extending up to a few microns. Nevertheless, the origin of carrier scattering at the SiC vicinal steps has not been clarified so far. A layer-resolved graphene transfer (LRGT) technique enables exfoliation of the epitaxial graphene formed on SiC wafers and transfer to flat Si wafers, which prepares crystallographically single-crystalline monolayer graphene. Because the LRGT flattens the deformed graphene at the terrace edges and permits an access to the graphene formed at the side wall of vicinal steps, components that affect the mobility of graphene formed near the vicinal steps of SiC could be individually investigated. Here, we reveal that the graphene formed at the side walls of step edges is pristine, and scattering near the steps is mainly attributed by the deformation of graphene at step edges of vicinalized SiC while partially from stripes of bilayer graphene. This study suggests that the two-step LRGT can prepare electrically single-domain graphene at the wafer-scale by removing the major possible sources of electrical degradation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5402461PMC
http://dx.doi.org/10.1073/pnas.1620176114DOI Listing

Publication Analysis

Top Keywords

vicinal steps
16
graphene formed
16
graphene
14
epitaxial graphene
8
single-domain graphene
8
monolayer graphene
8
carrier scattering
8
formed side
8
step edges
8
sic
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!