A sensitive assay reveals structural requirements for α-synuclein fibril growth.

J Biol Chem

From the Department of Neurology and Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri 63110

Published: June 2017

The accumulation of α-synuclein (α-syn) fibrils in neuronal inclusions is the defining pathological process in Parkinson's disease (PD). A pathogenic role for α-syn fibril accumulation is supported by the identification of dominantly inherited α-syn () gene mutations in rare cases of familial PD. Fibril formation involves a spontaneous nucleation event in which soluble α-syn monomers associate to form seeds, followed by fibril growth during which monomeric α-syn molecules sequentially associate with existing seeds. To better investigate this process, we developed sensitive assays that use the fluorescein arsenical dye FlAsH (fluorescein arsenical hairpin binder) to detect soluble oligomers and mature fibrils formed from recombinant α-syn protein containing an N-terminal bicysteine tag (C2-α-syn). Using seed growth by monomer association (SeGMA) assays to measure fibril growth over 3 h in the presence of C2-α-syn monomer, we observed that some familial PD-associated α-syn mutations ( H50Q and A53T) greatly increased growth rates, whereas others (E46K, A30P, and G51D) decreased growth rates. Experiments with wild-type seeds extended by mutant monomer and vice versa revealed that single-amino acid differences between seed and monomer proteins consistently decreased growth rates. These results demonstrate that α-syn monomer association during fibril growth is a highly ordered process that can be disrupted by misalignment of individual amino acids and that only a subset of familial-PD mutations causes fibril accumulation through increased fibril growth rates. The SeGMA assays reported herein can be utilized to further elucidate structural requirements of α-syn fibril growth and to identify growth inhibitors as a potential therapeutic approach in PD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5454090PMC
http://dx.doi.org/10.1074/jbc.M116.767053DOI Listing

Publication Analysis

Top Keywords

fibril growth
24
growth rates
16
growth
11
fibril
9
α-syn
9
structural requirements
8
α-syn fibril
8
fibril accumulation
8
fluorescein arsenical
8
monomer association
8

Similar Publications

Leadless pacemakers (LPs) are emerging options for bradyarrhythmias. However, extraction can be risky if the device is in an unfavorable position. We present a challenging case of a Nanostim LP (NLP) (Abbott Medical Inc.

View Article and Find Full Text PDF

Different types of anions mediated the formation of rice glutelin fibrils: Aggregation behaviors and structural characteristics.

Food Chem

January 2025

School of Food Science and Technology, State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Road 1800, Wuxi 214122, China. Electronic address:

Anions have more pronounced effect on the aggregation power of proteins than cations. Herein, the effect of different types of anions on rice glutelin (RG) based fibrils formation was investigated. The fibrils yield and growth rate of RG were enhanced with various anions, due to the specific ions effect and intermolecular interaction.

View Article and Find Full Text PDF

Guiding molecular assembly of peptides into rationally engineered nanostructures remains a major hurdle against the development of functional peptide-based nanomaterials. Various non-covalent interactions come into play to drive the formation and stabilization of these assemblies, of which electrostatic interactions are key. Here, the atomistic mechanisms by which electrostatic interactions contribute toward controlling self-assembly and lateral association of ultrashort β-sheet forming peptides are deciphered.

View Article and Find Full Text PDF

Insulin amyloid morphology is encoded in H-bonds and electrostatics interactions ruling protein phase separation.

J Colloid Interface Sci

December 2024

Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; Center for Biopharmaceuticals and Biobarriers in Drug Delivery, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark. Electronic address:

Ion-protein interactions regulate biological processes and are the basis of key strategies of modulating protein phase diagrams and stability in drug development. Here, we report the mechanisms by which H-bonds and electrostatic interactions in ion-protein systems determine phase separation and amyloid formation. Using microscopy, small-angle X-ray scattering, circular dichroism and atomistic molecular dynamics (MD) simulations, we found that anions specifically interacting with insulin induced phase separation by neutralising the protein charge and forming H-bond bridges between insulin molecules.

View Article and Find Full Text PDF

Plant Cell Wall-Like Soft Materials: Micro- and Nanoengineering, Properties, and Applications.

Nanomicro Lett

January 2025

Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.

Plant cell wall (CW)-like soft materials, referred to as artificial CWs, are composites of assembled polymers containing micro-/nanoparticles or fibers/fibrils that are designed to mimic the composition, structure, and mechanics of plant CWs. CW-like materials have recently emerged to test hypotheses pertaining to the intricate structure-property relationships of native plant CWs or to fabricate functional materials. Here, research on plant CWs and CW-like materials is reviewed by distilling key studies on biomimetic composites primarily composed of plant polysaccharides, including cellulose, pectin, and hemicellulose, as well as organic polymers like lignin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!