There is a groundswell of interest in using genetically engineered sensor bacteria to study gut microbiota pathways, and diagnose or treat associated diseases. Here, we computationally identify the first biological thiosulfate sensor and an improved tetrathionate sensor, both two-component systems from marine species, and validate them in laboratory Then, we port these sensors into a gut-adapted probiotic strain, and develop a method based upon oral gavage and flow cytometry of colon and fecal samples to demonstrate that colon inflammation (colitis) activates the thiosulfate sensor in mice harboring native gut microbiota. Our thiosulfate sensor may have applications in bacterial diagnostics or therapeutics. Finally, our approach can be replicated for a wide range of bacterial sensors and should thus enable a new class of minimally invasive studies of gut microbiota pathways.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5408782 | PMC |
http://dx.doi.org/10.15252/msb.20167416 | DOI Listing |
J Proteome Res
January 2025
Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain.
As part of the intestinal microbiota, can elicit a humoral response in the gastrointestinal tract (GIT) that is mainly directed toward hyphal antigens. This response has been implicated in controlling the invasive form of the fungus and maintaining the yeast as an innocuous commensal. However, the specific targets of this response are still unknown.
View Article and Find Full Text PDFMicrob Genom
January 2025
GMT Science 75 route de Lyons-La-Foret, Rouen F-76000, France.
Microbiome profiling tools rely on reference catalogues, which significantly affect their performance. Comparing them is, however, challenging, mainly due to differences in their native catalogues. In this study, we present a novel standardized benchmarking framework that makes such comparisons more accurate.
View Article and Find Full Text PDFDig Dis Sci
January 2025
Division of Gastroenterology, University of California, San Francisco, CA, USA.
Background: Pouchitis is common among patients with ulcerative colitis (UC) who have had colectomy with ileal pouch-anal anastomosis. Antibiotics are first-line therapy for pouch inflammation, increasing the potential for gut colonization with multi-drug resistant organisms (MDRO). Fecal microbial transplant (FMT) is being studied in the treatment of pouchitis and in the eradication of MDRO.
View Article and Find Full Text PDFPlant Foods Hum Nutr
January 2025
Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional, Col. San Isidro, Km 8.5 Carr. Yautepec-Jojutla, Yautepec, Morelos, C.P. 62731, México.
The relationship between the gut microbiota (GM) and the health of human beings has been a topic of growing interest in the last few years. Legumes are a rich source of indigestible carbohydrates, including resistant starch (RS), which are substrates of the GM. The aim of this study was to evaluate the effect of the indigestible fraction of legumes on the fecal microbiota of normal-weight (NW) and obese (O) donors.
View Article and Find Full Text PDFCurr Microbiol
January 2025
College of Ocean and Earth Sciences, Xiamen University, Fujian, 361005, China.
The fish intestine is a complex ecosystem where microbial communities are dynamic and influenced by various factors. Preservation conditions during field collection can introduce biases affecting the microbiota amplified during sequencing. Therefore, establishing effective, standardized methods for sampling fish intestinal microbiota is crucial.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!