Fungal chitosan based nanocomposites sponges-An alternative medicine for wound dressing.

Int J Biol Macromol

Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai, 600025, India.

Published: November 2017

The porous structured and cell proliferative biodegradable fungal chitosan (FCS) based composites with potential antibacterial property was prepared with Aloe vera extract (ALE) and the plant Cuscuta reflexa mediated biosynthesized silver nanoparticles (CUS-AgNPS) were developed for wound dressing applications by freeze drying method. Fungal chitosan was derived from Cunninghamella elegans a species belongs the family of Zygomycetes. The CUS-AgNPS were characterized by the UV-vis spectrum, XRD and SEM. CUS-AgNPS were loaded into the FCS-ALE sponges and were characterized by UV-vis spectrum, FT-IR and SEM. The nanocomposite sponges (FCS-ALE/CUS-AgNPS) showed prominent results against the different pathogenic bacteria and did not affect the cells were tested in vitro cell viability against human dermal fibroblast cell (HDF cells) which revealed significant cell viability. Based on these observations our composite formulation (FCS/ALE/CUS-AgNPS) could be suggested potential for wound dressing applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2017.03.188DOI Listing

Publication Analysis

Top Keywords

fungal chitosan
12
wound dressing
12
dressing applications
8
characterized uv-vis
8
uv-vis spectrum
8
cell viability
8
chitosan based
4
based nanocomposites
4
nanocomposites sponges-an
4
sponges-an alternative
4

Similar Publications

Bifunctional modified bacterial cellulose-based hydrogel through sequence-dependent crosslinking towards enhanced antibacterial and cutaneous wound healing.

Int J Biol Macromol

January 2025

Department of Microbiology, College of Life Science, Key Laboratory for Agriculture Microbiology, Shandong Agricultural University, Tai'an 271018, PR China; School of Pharmacy, the Key Laboratory of Medical Antibacterial Materials of Shandong Province, Binzhou Medical University, Yantai 264003, PR China. Electronic address:

Chronic wounds caused by microbial infection have emerged as a major challenge on patients and medical health system. Bacterial cellulose (BC) characterized by its excellent biocompatibility and porous network, holds promise for addressing complex wound issues. However, lack of inherent antibacterial activity and cross-linking sites in the molecular network of BC have constrained its efficacy in hydrogel design and treatment of bacterial-infected wounds.

View Article and Find Full Text PDF
Article Synopsis
  • Innovative strategies are needed to combat fungal pathogens for sustainable crop protection, with traditional fungicides facing resistance issues due to their single-target action.
  • The study investigated the synergistic effects of chitosan (CS) and the fungicide azoxystrobin, finding a high synergy score that significantly improves antifungal efficacy.
  • Additionally, combining CS and azoxystrobin with RNA interference techniques enhanced fungal control, highlighting a promising eco-friendly approach and the need for further research on its molecular mechanisms.
View Article and Find Full Text PDF

Polymeric Coatings with Electrolyzed Acidic Water: A Novel Approach to Extending Egg Shelf Life and Quality.

Polymers (Basel)

December 2024

Food Packaging and Shelf Life Research Group, Food Engineering Department, Universidad de Cartagena, Cartagena 130015, Colombia.

Electrolyzed acidic water (EAW) contains hypochlorous acid as its active compound, which is a potent antimicrobial. It was encapsulated in polymeric coatings and applied to the surface of eggs. The antimicrobial activity and the ability to extend the shelf life of eggs at ambient temperature for 45 days were evaluated, by physical, microbiological, and sensory analyses.

View Article and Find Full Text PDF

Fruit Vinegars as Natural and Bioactive Chitosan Solvents in the Production of Chitosan-Based Films.

Polymers (Basel)

December 2024

Department of Chemistry, Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 75, 60625 Poznan, Poland.

Natural fruit vinegars, derived from various fruits, enhance culinary experience and offer potential health benefits due to their bioactive compounds. In this study, fruit vinegars (apple, blackcurrant, and cherry) were used as natural solvents for producing chitosan films, introducing an environmentally friendly approach. Fruit vinegars and chitosan-based solutions were examined for their antioxidant and antimicrobial properties.

View Article and Find Full Text PDF

Elucidating the effect of chitosan microgel characteristics on the large amplitude oscillatory shear (LAOS) behavior of their stabilized high internal phase emulsions using the sequence of physical processes (SPP) approach and comparison with mayonnaise.

Int J Biol Macromol

January 2025

Glyn O. Phillips Hydrocolloid Research Centre, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Industrial Microbiology in Hubei, Key Laboratory of Fermentation Engineering (Ministry of Education), Department of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China; Food Hydrocolloid International Science and Technology Cooperation Base of Hubei Province, Wuhan 430068, China. Electronic address:

Chitosan microgels (h-CSMs) were prepared by cross-linking hydrophobically modified chitosan with sodium phytate (SP). Emulsions stabilized by h-CSMs with different inter-phase fraction, microgel concentration and cross-linking density were studied of their microstructural and rheological properties. In particular, the large amplitude oscillatory shear (LAOS) of the high internal phase emulsions (HIPEs) stabilized by h-CSMs were systematically analyzed using the Fourier transform with Chebyshev polynomials (FTC) and sequence of physical processes (SPP) methods, to explore their nonlinear rheological properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!