Zinc oxide nanoparticles are important nanomaterials currently under research due to their applicability in nanomedicine. Toxicity of ZnO NPs has been extensively studied and has been shown to affect various cell types and animal systems. In this study, we investigated hemolytic potential and oxidative stress inflicted by ZnO NPs and ZnO NPs-loaded-sodium alginate-gum acacia hydrogels on horse erythrocytes and African green monkey kidney (Vero) cells. Our study provides a better understanding of the hemolytic and oxidative effects of interaction of ZnO NPs and ZnO NPs released from polymeric hydrogels with the biological system. Remarkable aggregation of erythrocytes was noted in the higher concentration of ZnO NPs treated erythrocytes as compared to erythrocytes treated with ZnO NPs-loaded hydrogels. ZnO NPs-loaded hydrogels treated Vero cells significantly reduced oxidative stress as evidenced by less malondialdehyde production as compared to that of ZnO NPs treated cells. Normal horse erythrocytes when treated with ZnO NPs in in vitro condition undergo oxidative damage, and contribute in augmenting the toxicity. We demonstrated that polymeric ZnO NPs reduced the undesirable effects provoked by ZnO NPs on mammalian cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2017.03.180DOI Listing

Publication Analysis

Top Keywords

zno nps
36
zinc oxide
12
oxide nanoparticles
12
oxidative stress
12
zno
12
nps
9
acacia hydrogels
8
hemolytic oxidative
8
stress inflicted
8
mammalian cells
8

Similar Publications

The rapid advancement of nanotechnology, particularly in the realm of pharmaceutical sciences, has significantly transformed the potential for treating life-threatening diseases. A pivotal aspect of this evolution is the emergence of "green nanotechnology," which emphasizes the environmentally sustainable synthesis of raw materials through biological processes. This review focuses on the biological synthesis and application of zinc oxide (ZnO) nanoparticles (NPs) from probiotic bacteria, particularly those sourced from wastewater.

View Article and Find Full Text PDF

This study investigates the potential of zinc oxide (ZnO) and Ag-doped zinc oxide (Ag-ZnO) nanoparticles (NPs) (1, 3 and 5 wt%) electrospun into poly(vinylidene fluoride) (PVDF) based triboelectric nanogenerators (TENGs) to harness electrical energy from ambient mechanical vibrations. ZnO and Ag-ZnO NPs were developed using a co-precipitation method. 3 wt% Ag-ZnO doping was optimized to exhibit a higher β-crystalline phase in PVDF (PAZ3).

View Article and Find Full Text PDF

Zinc oxide nanoparticle-embedded tannic acid/chitosan-based sponge: A highly absorbent hemostatic agent with enhanced antimicrobial activity.

Int J Biol Macromol

January 2025

Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1416634793, Iran; Wound Care Solution, Nano Fanavaran Narin Teb Co., Tehran, P.O. Box 19177-53531, Iran; Physical Chemistry I, Department of Chemistry and Biology & Research Center of Micro and Nanochemistry and Engineering (Cμ), University of Siegen, 57076 Siegen, Germany. Electronic address:

This study reports the development of a highly absorbent Chitosan (CS)/Tannic Acid (TA) sponge, synthesized via chemical cross-linking with Epichlorohydrin (ECH) and integrated with zinc oxide nanoparticles (ZnO NPs) as a novel hemostatic anti-infection agent. The chemical properties of the sponges were characterized using Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and zeta potential measurements. Morphological and elemental analyses conducted through scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDAX) revealed a uniform distribution of ZnO NPs, with particle sizes below 20 nm.

View Article and Find Full Text PDF

Background And Aim: In dental clinics, disinfecting alginate impression materials is a critical practice to prevent cross-infection. Recently, zinc oxide nanoparticles (ZnO NPs) have been explored for their potential antimicrobial properties, making them promising additives for dental materials. This study investigates the antimicrobial activity of ZnO NPs incorporated into alginate impression materials and assesses the impact on material flow.

View Article and Find Full Text PDF

The protective effect of zinc oxide nanoparticles on boar sperm during preservation at 17 °C.

Anim Reprod

January 2025

Hebei Key Laboratory of Animal Diversity, College of Life Sciences, Langfang Normal University, Hebei Langfang, China.

More than 90% of spermatozoa of boars in pork producing countries is stored in liquid at 17 °C; however, the quality of these spermatozoa is affected by bacterial breeding and oxidative damage. This study analyzed sperm quality and sperm capacitation after storage to study the effects of the effects of ZnO nanoparticles (ZnO NPs) supplementation on seminal plasma (SP)-free sperm preservation. We investigated the effects of adding 20, 50, 100 and 200 μg/mL of ZnO NPs to a seminal free boar sperm diluent over a 7-day period at 17 °C to assess the changes in non-capacitated/capacitated sperm quality parameters, antioxidant capacity, ATP content and extent of protein tyrosine phosphorylation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!