Topodynamics of metastable brains.

Phys Life Rev

Bioinformation Group, Aragon Institute of Health Science (IACS), Aragon Health Research Institute (IIS Aragon), Zaragoza, 50009 Spain. Electronic address:

Published: July 2017

The brain displays both the anatomical features of a vast amount of interconnected topological mappings as well as the functional features of a nonlinear, metastable system at the edge of chaos, equipped with a phase space where mental random walks tend towards lower energetic basins. Nevertheless, with the exception of some advanced neuro-anatomic descriptions and present-day connectomic research, very few studies have been addressing the topological path of a brain embedded or embodied in its external and internal environment. Herein, by using new formal tools derived from algebraic topology, we provide an account of the metastable brain, based on the neuro-scientific model of Operational Architectonics of brain-mind functioning. We introduce a "topodynamic" description that shows how the relationships among the countless intertwined spatio-temporal levels of brain functioning can be assessed in terms of projections and mappings that take place on abstract structures, equipped with different dimensions, curvatures and energetic constraints. Such a topodynamical approach, apart from providing a biologically plausible model of brain function that can be operationalized, is also able to tackle the issue of a long-standing dichotomy: it throws indeed a bridge between the subjective, immediate datum of the naïve complex of sensations and mentations and the objective, quantitative, data extracted from experimental neuro-scientific procedures. Importantly, it opens the door to a series of new predictions and future directions of advancement for neuroscientific research.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plrev.2017.03.001DOI Listing

Publication Analysis

Top Keywords

brain
5
topodynamics metastable
4
metastable brains
4
brains brain
4
brain displays
4
displays anatomical
4
anatomical features
4
features vast
4
vast amount
4
amount interconnected
4

Similar Publications

Loneliness is associated with different structural brain changes in schizophrenia spectrum disorders and major depression.

Schizophr Res

January 2025

Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; German Center for Mental Health (DZPG), partner site Mannheim-Heidelberg-Ulm, Germany. Electronic address:

Background: Loneliness, distress from having fewer social contacts than desired, has been recognized as a significant public health crisis. Although a substantial body of research has established connections between loneliness and various forms of psychopathology, our understanding of the neural underpinnings of loneliness in schizophrenia spectrum disorders (SSD) and major depressive disorder (MDD) remains limited.

Methods: In this study, structural magnetic resonance imaging (sMRI) data were collected from 57 SSD and 45 MDD patients as well as 41 healthy controls (HC).

View Article and Find Full Text PDF

Is Intracranial Pressure Monitoring After Open Cranial Procedures Associated With Outcome?

J Surg Res

January 2025

Division of Trauma and Critical Care, Department of Surgery, Reading Hospital, West Reading, Pennsylvania. Electronic address:

Introduction: It is unclear if intracranial pressure monitoring (ICPM) after open cranial procedures (craniotomy or craniectomy) (OC) for traumatic brain injury is associated with mortality. We hypothesized that ICPM placed early after OC was associated with lower mortality compared to no ICPM or delayed ICPM placement.

Methods: Using 2020-2021 data from the American College of Surgeons Trauma Quality Improvement Program, patients ≥16 y from level 1 and 2 trauma centers who underwent OC were divided into two groups: ICPM placed within 72 h of OC (early) and no ICPM or ICPM placed after 72 h (none/delayed).

View Article and Find Full Text PDF

Monolithic U-shaped crystal design for TOF-DOI detectors: a flat top vs. a tapered top.

Biomed Phys Eng Express

January 2025

Advanced Nuclear Medicine Science, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, JAPAN, Chiba, 263-8555, JAPAN.

For brain-dedicated positron emission tomography (PET) scanners, depth-of-interaction (DOI) information is essential to achieve uniform spatial resolution across the field-of-view (FOV) by minimizing parallax error. Time-of-flight (TOF) information can enhance the image quality. In this study, we proposed a novel monolithic U-shaped crystal design that had a tapered geometry to achieve good coincidence timing resolution (CTR) and DOI resolution simultaneously.

View Article and Find Full Text PDF

Background: eHealth interventions constitute a promising approach to disease prevention, particularly because of their ability to facilitate lifestyle changes. Although a rather recent development, eHealth interventions might be able to promote brain health and reduce dementia risk in older adults.

Objective: This study aimed to explore the perspective of general practitioners (GPs) on the potentials and barriers of eHealth interventions for brain health.

View Article and Find Full Text PDF

Electrochemical aptamer-based (EAB) sensors are a molecular measurement platform that enables the continuous, real-time measurement of a wide range of drugs and biomarkers in situ in the living body. EAB sensors are fabricated by depositing a thiol-modified, target-binding aptamer on the surface of a gold electrode, followed by backfilling with an alkanethiol to form a self-assembled monolayer. And while the majority of previously described EAB sensors have employed hydroxyl-terminated monolayers, a handful of studies have shown that altering the monolayer headgroup can strongly affect sensor performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!