A direct electron detector for time-resolved MeV electron microscopy.

Rev Sci Instrum

SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA.

Published: March 2017

The introduction of direct electron detectors enabled the structural biology revolution of cryogenic electron microscopy. Direct electron detectors are now expected to have a similarly dramatic impact on time-resolved MeV electron microscopy, particularly by enabling both spatial and temporal jitter correction. Here we report on the commissioning of a direct electron detector for time-resolved MeV electron microscopy. The direct electron detector demonstrated MeV single electron sensitivity and is capable of recording megapixel images at 180 Hz. The detector has a 15-bit dynamic range, better than 30-μm spatial resolution and less than 20 analogue-to-digital converter count RMS pixel noise. The unique capabilities of the direct electron detector and the data analysis required to take advantage of these capabilities are presented. The technical challenges associated with generating and processing large amounts of data are also discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4977923DOI Listing

Publication Analysis

Top Keywords

direct electron
24
electron detector
16
electron microscopy
16
time-resolved mev
12
mev electron
12
electron
10
detector time-resolved
8
electron detectors
8
microscopy direct
8
direct
6

Similar Publications

Upgrade of Weak σ-hole Bond Donors via Cr(CO)3 Complexation.

Chemistry

January 2025

Politecnico di Milano, Department of Chemistry, Materials, Chemical Engineer., via Mancinelli 7, 20131, Milan, ITALY.

Molecular recognition mediated by s-hole interactions is enhanced as the electrostatic potential at the σ-hole becomes increasingly positive. Traditional methods to strengthen σ-hole donor ability of atoms such as halogens often involve covalent modifications, such as, introducing electron-withdrawing substituents (neutral or positively charged) or electrochemical oxidation. Metal coordination, a relatively underexplored approach, offers a promising alternative.

View Article and Find Full Text PDF

Oxygen, light, and mechanical force mediated radical polymerization toward precision polymer synthesis.

Chem Commun (Camb)

January 2025

State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.

The synthesis of polymers with well-defined composition, architecture, and functionality has long been a focal area of research in the field of polymer chemistry. The advancement of controlled radical polymerization (CRP) has facilitated the synthesis of precise polymers, which are endowed with new properties and functionalities, thereby exhibiting a wide range of applications. However, radical polymerization faces several challenges, such as oxygen intolerance, and common thermal initiation methods may lead to side reactions and depolymerization.

View Article and Find Full Text PDF

Medusa's gaze: Cell traces and fibrils but no collagen in permineralized Jurassic ichthyosaur bone.

iScience

January 2025

Abteilung Paläontologie, Bonner Institut für Organismische Biologie, Universität Bonn, 53115 Bonn, Germany.

Bone is formed by specialized cells whose activity allows bone to grow, change shape, and repair itself. Its composite structure of collagen fibrils and bioapatite nanocrystals gives bone exceptional mechanical strength. Using scanning electron microscopy, we show in fossil ichthyosaurs, 150 to 200 million years old, from the Jurassic of France and the UK, abundant and direct evidence of cellular activity on the fossilized forming, resting, and resorbing surfaces of bone trabeculae, as well as bone fibrils, Sharpey fibers, and cartilage fibers.

View Article and Find Full Text PDF

Minimal change disease (MCD) accounts for 10 - 15% of idiopathic nephrotic syndromes in adults. Chronic hepatitis C virus (HCV) infection is rarely ascribed as a cause of MCD and was previously associated with interferon-based therapy. MCD in treatment-naïve chronic HCV infection is extremely rare, with only 3 cases reported in the literature.

View Article and Find Full Text PDF

Epigenetic Control of Redox Pathways in Cancer Progression.

Antioxid Redox Signal

January 2025

Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.

Growing evidence indicates the importance of redox reactions homeostasis, mediated predominantly by reactive oxygen species (ROS) in influencing the development, differentiation, progression, metastasis, programmed cell death, tumor microenvironment, and therapeutic resistance of cancer. Therefore, reviewing the ROS-linked epigenetic changes in cancer is fundamental to understanding the progression and prevention of cancer. We review in depth the molecular mechanisms involved in ROS-mediated epigenetic changes that lead to alteration of gene expression by altering DNA, modifying histones, and remodeling chromatin and noncoding RNA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!